
Numerical Simulation of Stresses due to Solid State
Transformations

The Simulation of Laser Hardening



Samenstelling van de promotiecommissie:

voorzitter en secretaris:
Prof. dr. ir. H.J. Grootenboer Universiteit Twente

promotor:
Prof. dr. ir. J. Huétink Universiteit Twente

leden:
Dr. ir. J. Beyer Universiteit Twente
Prof. dr. ir. M.G.D. Geers Technische Universiteit Eindhoven
Prof. dr. ir. B. Koren Technische Universiteit Delft
Prof. dr. ir. J. Meijer Universiteit Twente
Prof. dr. I.M. Richardson Technische Universiteit Delft
Prof. dr. ir. H. Tijdeman Universiteit Twente

Numerical Simulation of Stresses due to Solid State Transformations
The Simulation of Laser Hardening
Geijselaers, H.J.M.

Thesis University of Twente, Enschede - with ref. with summary in Dutch.
ISBN 90-365-1962-4

Keywords: phase transformations, plasticity, residual stress, laser hardening,
ALE method, steady state.

Cover designed by Karin van Beurden.
Printed by Ponsen & Looijen, Wageningen.

Copyright © 2003 by H.J.M. Geijselaers, Hellendoorn, The Netherlands

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without prior written permission of the copyright holder.



NUMERICAL SIMULATION OF STRESSES DUE TO
SOLID STATE TRANSFORMATIONS

THE SIMULATION OF LASER HARDENING

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 17 oktober 2003 om 13.15 uur

door

Hubertus Josephus Maria Geijselaers

geboren op 20 april 1954
te Berg en Terblijt



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. J. Huétink



Contents

summary ix

samenvatting xi

Nomenclature xiii

I SIMULATION OF SOLID STATE TRANSFORMATIONS 1

1 Introduction 3
1.1 Numerical simulations of hardening . . . . . . . . . . . . . . . . . . . . . 4
1.2 Laser hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 numerical simulation of laser hardening . . . . . . . . . . . . . . . 4
1.2.2 steady state laser hardening . . . . . . . . . . . . . . . . . . . . . 5

1.3 About this thesis .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Phase Transformation Models 7
2.1 Introduction . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Diffusion controlled transformations . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 kinetics, Avrami equation . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 austenite-pearlite transformation .. . . . . . . . . . . . . . . . . . 10

2.3 Martensite transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Stress-transformation interaction . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 modifications to the kinetics . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 transformation induced plasticity . . . . . . . . . . . . . . . . . . . 16

2.5 Composite constitutive relations .. . . . . . . . . . . . . . . . . . . . . . 17
2.6 Plastic strain and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Thermo-Mechanical Analysis with Phase Transformations 21
3.1 Thermal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 transformation and thermal strain . . . . . . . . . . . . . . . . . . 23
3.2.2 transformation induced plasticity . . . . . . . . . . . . . . . . . . . 23
3.2.3 constitutive equations . . .. . . . . . . . . . . . . . . . . . . . . . 24

v



vi Contents

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Finite Time Steps 27
4.1 Phase fraction increments�ϕ . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 martensite transformation . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 diffusion controlled transformations . . . . . . . . . . . . . . . . . 28

4.2 The temperature increment�T . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 The stress increment�σσσ . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 the pressure increment . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 the radial return method . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 consistency iteration . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Consistent tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Thermo-mechanical coupling . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Finite Element Discretization 41
5.1 Thermal analysis using heat flow elements . . . . . . . . . . . . . . . . . . 41

5.1.1 incremental formulation . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Coupled thermo-mechanical analysis . . .. . . . . . . . . . . . . . . . . . 43

5.2.1 staggered solution approach . . . . . . . . . . . . . . . . . . . . . 44
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Examples 47
6.1 Simulations of standard hardening tests . . . . . . . . . . . . . . . . . . . 47

6.1.1 Jominy test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 transformation induced plasticity . . . . . . . . . . . . . . . . . . . 48

6.2 Laser hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.1 1-D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 2-D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.3 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

II SIMULATION OF STEADY LASER HARDENING 59

7 Arbitrary Lagrangian Eulerian Method 61
7.1 Introduction . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 implementation of the ALE method . . . . . . . . . . . . . . . . . 62
7.2 Mesh management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 free surface movement . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Remap of state variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.1 the discontinuous Galerkin method for convection . .. . . . . . . 66
7.3.2 the second order discontinuous Galerkin method . . .. . . . . . . 69
7.3.3 element-wise point-implicit scheme . . . . . . . . . . . . . . . . . 71
7.3.4 multi-dimensional convection . .. . . . . . . . . . . . . . . . . . 71
7.3.5 accuracy of the convection scheme. . . . . . . . . . . . . . . . . . 72



Contents vii

7.4 Simulation of steady laser hardening . . . . . . . . . . . . . . . . . . . . . 76
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 A One-Step Steady State method 81
8.1 The displacement based reference frame formulation .. . . . . . . . . . . 82
8.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2.1 phase transformations . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2.2 mechanical equilibrium . .. . . . . . . . . . . . . . . . . . . . . . 83
8.2.3 thermal equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3.1 convection equation . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3.2 thermal equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3.3 mechanical equilibrium . .. . . . . . . . . . . . . . . . . . . . . . 86
8.3.4 the strain rated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4.1 outlet boundary conditions. . . . . . . . . . . . . . . . . . . . . . 88

8.5 Simulations of steady laser hardening . . . . . . . . . . . . . . . . . . . . 89
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9 Conclusions and Recommendations 95

A Material Data for Ck45 97

B Estimation of Isothermal Transformation Curves from Continuous Transfor-
mation Data 103
B.1 Introduction . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.2 Kinetic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.3 Estimation of time constants . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.4 Austenite-pearlite reaction. . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.4.1 ferrite formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.4.2 pearlite formation .. . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.5 Continuous cooling curves (CCT). . . . . . . . . . . . . . . . . . . . . . 110
B.6 Continuous heating curves (TTA) .. . . . . . . . . . . . . . . . . . . . . . 111

C A Ductile Matrix with Rigid Inclusions 113
C.1 Introduction . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.2 Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.3 Overall yield stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
C.4 Application to austenite-martensite mixture . . . . . . . . . . . . . . . . . 117

Bibliography 119

Dankwoord 125





summary

The properties of many engineering materials may be favourably modified by application of
a suitable heat treatment. Examples are precipitation hardening, tempering and annealing.
One of the most important treatments is the transformation hardening of steel. Steel is an
alloy of iron and carbon. At room temperature the sollubility of carbon in steel is negligi-
ble. The carbon seggregates as cementite (Fe3C). By heating the steel above austenization
temperature a crystal structure is obtained in which the carbon does solve. When cooled
fast the carbon cannot seggregate. The resulting structure, martensite is very hard and also
has good corrosion resistance.

Traditionally harding is done by first heating the whole workpiece in an oven and then
quenching it in air, oil or water. Other methods such as laser hardening and induction
hardening are charaterized by a very localized heat input. The quenching is achieved by
thermal conduction to the cold bulk material. A critical factor in these processes is the time
required for the carbon to dissolve and homogenize in the austenite.

This thesis consists of two parts. In the first part algorithms and methods are developed
for simulating phase transformations and the stresses which are generated by inhomoge-
neous temperature and phase distributions. In particular the integration of the constitutive
equations at large time increments is explored. The interactions between temperatures,
stresses and phase transformations are cast into constitutive models which are suitable for
implementation into a finite element model.

The second part is concerned with simulation of steady state laser hardening. Two
different methods are elaborated, the Arbtrary Lagrangian Eulerian (ALE) method and a
direct steady state method. In the ALE method a transient calculation is prolonged until
a steady state is reached. An improvement of the convection algorithm enables to obtain
accurate results within acceptable calculation times.

In the steady state method the steadiness of the process is directly incorporated into
the integration of the constitutive equations. It is a simplified version of a method recently
published in the literature. It works well for calculation of temperatures and phase distribu-
tions. When applied to the computation of distortions and stresses, the convergence of the
method is not yet satisfactory.
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samenvatting

Van veel metalen kunnen de eigenschappen beinvloed worden door het toepassen van een
geschikte warmtebehandeling. In de techniek is de belangrijkste warmtebehandeling het
transformatieharden van staal. Staal is een legering van ijzer en koolstof. Op kamertempe-
ratuur is de oplosbaarheid van koolstof in ijzer vewaarloosbaar, het scheidt uit in de vorm
van cementiet (Fe3C). Door het staal te verwarmen tot boven de austenitiseringstempera-
tuur wordt een kristalstructuur bewerkstelligd, waarin de koolstof wel oplost. Bij snelle
afkoeling heeft het koolstof geen gelegenheid om uit te scheiden. De resulterende struc-
tuur, martensiet is zeer hard en heeft ook goede corrosie eigenschappen. Op de traditionele
manier gebeurt het harden van staal door het werkstuk in zijn geheel op te warmen en ver-
volgens voldoende snel af te koelen. Bij andere methoden, zoals laser harden en inductie
harden, wordt de warmte zeer lokaal toegevoerd. De snelle afkoeling wordt dan bereikt
door warmtegeleiding naar het koude basismateriaal. Bij deze processen is het vooral van
belang, dat een voldoende hoge temperatuur bereikt wordt om in zeer korte tijd de koolstof
op te lossen en homogeen te verdelen in het austeniet.

Dit proefschrift bestaat uit twee delen. In het eerste deel worden de algorithmes en
methoden uitgewerkt, waarmee het mogelijk wordt om de omvang van de fase transfor-
maties te voorspellen alsmede de hiermee gepaard gaande restspanningen. Vooral aan een
nauwkeurige beschrijving van de interacties tussen de temperaturen, spanningen en fase
transformaties wordt aandacht besteed. Dit resulteert in een stelsel consistente vergelijkin-
gen, waarmee het verloop van temperaturen, spanningen en fase transformaties kan worden
beschreven. Een eindige elementen model is geformuleerd, waarin deze vergelijkingen zijn
opgenomen.

In het tweede deel gaat de aandacht vooral uit naar beschrijving van stationair laser-
harden. Hiervoor worden twee verschillende methoden gebruikt, de Arbitrary Lagrangian
Eulerian (ALE) methode en een directe stationaire methode. In de ALE methode wordt een
transiente berekening net zolang doorgezet, totdat een stationaire situatie ontstaat. Mede
door het gebruik van een verbeterd convectie algorithme is het mogelijk om hierbij met
acceptabel rekentijden goede resultaten te behalen.

In de tweede methode is het stationair zijn van het process gelijk verwerkt in de integratie
van de constitutieve vergelijken. Ze bouwt voort op een onlangs in de literatuur gepubli-
ceerde methode, waarbij gepoogd is deze enigszins te vereenvoudigen. Toepassing voor
berekening van temperaturen en fase verdelingen levert uitstekende resultaten. Bij de bere-
kening van spanningen en vervormingen wordt echter nog geen bevredigende convergentie
bereikt.
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1. Introduction

The equilibrium arrangement of atoms in metals in the solid state is an ordered regular
pattern, the crystal structure. Which crystal structure is in equilibrium, often depends on
the temperature. A phase with a certain crystal structure can be defined as a portion of
a system, for instance an alloy, whose properties and composition are homogeneous and
which is physically distinct from other parts of the system. Many alloys, steel in particular,
have a mixture of different phases present at the same time.

The study of phase transformations is concerned with how one or more phases in an
alloy change into a new phase or mixture of phases. Since it deals with changes towards
equilibrium, thermodynamics is a verypowerful tool. However, the rate at which equilibrium
is reached cannot be determined by thermodynamics alone. The time dependence has to be
taken into account through the kinetics of the process (Porter and Easterling, 1992).

An important technological process is transformation hardening by quenching. It may be
applied to steel to improve wear resistance, fatigue strength and often corrosion resistance.
The phases with their specific microstructural characteristics are a design variable which
within certain restrictions may be varied to obtain favourableproperties. By applying various
heat treatments in a way that insufficient time is available to form the equilibrium phase(s),
the steel transforms to martensite. For specific applications a mixture of martensite with
other (stable or metastable) phases such as pearlite, ferrite , bainite or austenite may be
required. Examples are maraging steels, TRIP steels and dual phase steels.

Phase transformations require a specific thermal treatment to obtain the desired (mi-
cro)structure. In surface hardening the heating and cooling is usually applied to the surface
of the workpiece rather than homogeneously to the whole bulk. As a consequence the
temperature distribution and the heating or cooling rate at any time during the process will
be inhomogeneous. Due to the inhomogeneous temperature distributions inhomogeneous
transformations will occur. The kinetics of the transformation varies locally. Moreover,each
phase has a different specific volume. The combination of both inhomogeneous tempera-
tures and inhomogeneous transformations causes complicated stress states. The eventual
product may come out warped and distorted and will contain residual stresses.

Conventional surface hardening is done by heating the workpiece in an oven and keeping
it at an elevated temperature for some time in order to obtain austenite. After thorough
austenization it is rapidly cooled and the whole surface will be hardened. Hardening of steel
workpieces hinges strongly on experience. lt is done in specialized shops by specialized
workmen. Yet, prediction of the results in terms of hardness, hardening depth and shape
stability is only done qualitatively. A proper hardness is often essential to the service life
of a product. When the heat treatment results in excessive distortions additional machining
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4 Introduction

is required to obtain the specified dimensions. During manufacturing, knowledge of the
dimensions and the residual stresses after thermal treatment may yield substantial savings
in machining costs. Numerical simulations can yield a number of benefits in this respect.
The thermal cycles can be optimized to obtain the desired hardening result at a minimum
cost, without extensive tests on the actual hardware. Benefits are gained in manufacturing
as well as during service.

1.1 Numerical simulations of hardening

The possibilities of numerical simulations for prediction of hardening results were first ex-
plored some 30 years ago. Early attempts to predict residual stresses due to transformations
relied on modification of thermal expansion in the temperature range where a transformation
was expected to happen. In this primitive way the density differences between phases were
accounted for (e.g. Rammerstorferet al. (1981)). Hildenwall and Ericson (1977) and Inoue
and Raniecki (1978) were the first to include explicit phase transformation kinetics in their
models. Although more complicated, this had the advantage that it actually allowed to carry
out realistic calculations of phase distributions in the workpiece.

Further research lead to refinements, notably inclusion of influence of stress state on
transformation kinetics (Deniset al., 1985) and of transformation plasticity (Leblond and
Devaux, 1984; Abbasi and Fletcher, 1985; Sjöström, 1985; Denis and Simon, 1986). The
numerical methods developed have also been applied to other technological processes such
as cladding and welding (Ronda and Oliver, 2000; Lindgren, 2001).

1.2 Laser hardening

When only a few selected parts of the surface are to be hardened, laser hardening is an ideal
technique (Stähli, 1979; Steen and Courtney, 1979; Chatterjee-Fischeret al., 1984). With the
help of a laser beam which scans the surface of the workpiece, locally very high temperatures
can be obtained. Since this heating is very local, there are very high temperature gradients
so that after the laser beam has passed cooling occurs very quickly. The temperature rates
during heating as well as cooling are of the order of 1000 - 10000 K/s. The cooling rate is
high enough to guarantee formation of martensite from all austenite formed during heating.

Due to the short interaction times, the time available for austenization is very short.
In order for the material to sufficiently austenitize, the process parameters (power density
and interaction time) have to be chosen such that the maximum temperature approaches the
melting temperature. The importance of sufficiently high temperatures has already been
recognized by Stähli (1979) and is very clearly explained in Ashby and Easterling (1984).

1.2.1 numerical simulation of laser hardening

The procedures developed for simulation of transformation hardening have also been applied
to laser hardening (Fariaset al., 1990; Huétinket al., 1990a; Ohmuraet al., 1991). The
model of phase transformation kinetics had to be adapted to account for specific phenomena
connected to rapid thermal cycles, such as incomplete austenization and grain growth at high
temperatures.



1.3 About this thesis 5

The results of these studies can be directly applied to welding. The base material next
to the weld goes through a thermal cycle which strongly resembles a laser hardening cycle.
During multi-pass welding also reheating of previously laid down material occurs so that
the same material is thermally cycled several times. To capture the behavior of the material
in just a few state variables still remains a challenge (Lindgren, 2001).

1.2.2 steady state laser hardening

When a window is defined fixed to the laser beam and the material is made to pass through
the window, hardening with a scanning laser can be viewed as a steady state process. In
solid mechanics the regular way to numerically simulate a steady process is to carry out a
transient calculation and prolong it until a steady state has been reached. For laser hardening
this means that the heat affected zone has to be paved with a very dense element mesh in
order to be able to capture the highly localized behaviour in sufficient detail.

Considerable savings in computation times can be gained when it is possible to exploit
the specific properties of a steady process in a numerical model and directly evaluate the
steady state. A number of methods which directly calculate steady states, applied to thermal
processing, have been published (Bergheauet al., 1991; Gu andGoldak,1994; Hacquinet al.,
1996; Ruan, 1999; Balagangadharet al., 1999; Shanghvi and Michaleris, 2002)

The main points of interest when performing simulations are the thickness of the harde-
ned layer, the residual stresses and the final distortion of the workpiece. Since calculation
of residual stresses is desired, an elastic-plastic material model must be used. The inclusion
of elasticity causes stability problems in steady state simulations (Thompson and Yu, 1990).

1.3 About this thesis

The objective of this work is to present methods which can be used for numerical simu-
lations of phase transformations at the workpiece level. The emphasis is on description
of macroscopic phenomena, rather than on what exactly happens within the crystals. The
fraction of each phase present is treated as a state variable. The variation of this phase
fraction is subject to kinetic equations, so that different thermal histories may yield different
phase fraction distributions. Eventually phase distribution, residual stresses and distortions
are to be predicted.

This thesis consists of two parts. The first part is concerned with simulations of phase
transformations. In Chapter 2 the models of phase transformation are described as well as
phenomena which are connected to the coupling between phase transformations and a stress
field. A new method has been developed for determining the kinetic parameters for phase
transformation simulations. This is described in Appendix B.

How the models of Chapter 2 are cast into constitutive relations is shown in Chapter 3
where rate equations for temperature and stress are derived. In Chapter 4 the rate equations
are adapted for finite time steps and cast into a finite element model in Chapter 5. While
the rate equations are still quite simple and standard, the extension to finite steps adds
considerable complexity, which has not yet been reported in the literature. The assessment
whether it is worthwhile to use these complex coupled equations instead of the simpler rate
equations is part of this thesis and is addressed in Chapter 6.
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The second part deals with the simulation of steady state laser hardening. Two methods
will be presented here. The first method (Chapter 7) is based on the Arbitrary Lagrangian-
Eulerian (ALE) method. This is essentially a transient simulation method on a largely
Eulerian grid. The contribution to the ALE method as presented in this thesis is a major
improvement in the modeling of the transient convective terms in the evolution of the state
variables.

The second method is a truly steady state model (Chapter 8). It resembles a Total
Lagrangian method, however, the steady nature of the problem is incorporated in the inte-
gration of the state variables. The use of a Discontinuous Galerkin method for the streamline
integration as well as the streamline differentiation are original contributions.



2. Phase Transformation Models

This thesis mainly concerns finite element simulations of stresses and distortions due to
transformation hardening. Inevitably this means that of all the different processes going
on during phase transformations we only focused on those that influence the macroscopic
behaviour of the workpiece. More than ten different kinds of microstructures have been
identified to occur during the thermal processing of steel (Zhao and Notis, 1995). The phase
which is usually desired as a result of transformation hardening is martensite. Of all the
other phases which may exist at room temperature only ferrite, pearlite and austenite are
considered. In this chapter the phenomenological models which are used to describe phase
transformations in the finite element simulations are detailed. Incorporating other phase
transformations is expected to be possible using these models with appropriate parameters.

In Section 2.2 the equations which describe the kinetics of diffusion controlled trans-
formations are given. Here special attention is paid to the modeling of superheating and
supercooling, which are important phenomena in a rapid process like laser hardening. In
Section 2.4 the modifications to kinetics due to applied stresses are explained as well as
transformation plasticity.

In Sections 2.5 and 2.6 two additional subjects which are not directly connected to
phase transformations are treated. In Section 2.5 an estimate for the yield stress of a
mixture of a soft phase with hard inclusions is given. This is relevant during the martensite
transformation. In Section 2.6 a simple model for high temperature recovery is presented.
This is added because during laser hardening locally temperatures are reached which are
far higher than during regular case hardening.

In this work the unalloyed steel Ck45 was used because of the ample amount of data
which is available on the behaviour of this steel. Where other steels show a different
behaviour, transformation hardening of such steels may still be described by models similar
to those presented here.

2.1 Introduction

From a macroscopic point of view we distinguish two types of transformations: diffusion
controlled transformations and displacive lattice changes. For numerical simulations, the
main difference is that the former require a certain time to take effect, whereas the latter
may be viewed as an instantaneous change in the crystal lattice.
The proportion of the various phases in an alloy at a given temperature is described by the
equilibrium phase diagram. The phase diagram of iron-carbon alloy is shown in Figure 2.1.

7
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Figure 2.1: Iron-carbon phase diagram

Ck45 nominally contains 0.45 % carbon. When cooled from the liquid state (L) it
solidifies as austenite (γ ). After further cooling the A3 temperature (TA3) is reached. Below
this temperature ferrite (α), a phase with practically no solubility of carbon, forms. Through
diffusion the carbon is rejected into the remaining austenite. Below the A1 temperature (TA1)
this austenite, which then contains approximately 0.8 % C, transforms eutectically into a
mixture of ferrite and cementite (Fe3C) called pearlite. Usually the cementite is dispersed in
lamellae, giving the pearlite the mother-of-pearl appearance from which it derives its name.
The austenite/pearlite reaction requires diffusion of carbon and takes time to materialize.
When the cooling proceeds rapidly no or not all austenite transforms. The remaining
austenite transforms to martensite (α′) below the martensite-start (Ms) temperature.

2.2 Diffusion controlled transformations

As can be seen in Figure 2.1 the solubility of carbon in the parent phase differs with tempera-
ture. Excess alloying element quantity must be removed from the matrix and will aggregate
as a different phase either in a solution or as a compound with other alloying elements.

The transformation proceeds via nucleation and subsequent growth. The kinetics shows
two phases. Initially the new phase nucleates at preferred lattice sites and each nucleus starts
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to grow steadily into a new grain. In time the available nucleation sites become exhausted
and the growing grains will start impinging upon one another. Different mathematical
models have been proposed to describe the transformation kinetics. Usually the growth of
any phase is initially assumed to obeyϕ(t) = ktn . Throughout this thesisϕ stands for
the volume fraction of the considered phase. The Avrami exponentn depends on the ratio
between nucleation rates and growth rates. With progressing transformation the available
nucleation volume becomes exhausted. It is related to the amount of parent phase left
(1 − ϕ). Also, retardation due to impingement is described by this term. This leads to a
general rate equation:

ϕ̇ = (1 − ϕ)r kntn−1 (2.1)

Choosingr = 1 we obtain the Avrami equation,r = 2 leads to the Austin-Rickett equation
(Austin and Rickett, 1939), see also Appendix B. The relative merits of different models
have been investigated by Starink (1997). The overall differences appear small. In this
work the Avrami equation was chosen.

2.2.1 kinetics, Avrami equation

When (2.1) is appropriately integrated the Johnson-Mehl-Avrami-Kolmogorov expression
for diffusional phase changes (Avrami, 1939, 1940, 1941) is obtained. Leblond and Devaux
(1984) corrected it to account for transformations which do not saturate to the full 100 %
(Figure 2.2):

ϕ(t) = ϕ0 + (ϕ̄ − ϕ0)

(
1 − e−(t/τ)n

)
(2.2)

Hereϕ̄(T ) is the equilibrium phase content,ϕ0 is the initial phase content. The coefficients
n andτ (T ) depend on the nucleation frequency and on the growth rate. Instead of the factor
k in Equation (2.1), which has the awkward dimensiontime−n we prefer to use a reaction
time constantτ . Bothϕ̄ andτ are functions of the temperatureT. The exponentn is constant
when the nucleation rate and the growth rate have identical temperature dependence.

0 1 2 t/τ

ϕ(t)

ϕ0

ϕ

Figure 2.2: Avrami S-curve

Equation (2.2) has been derived for isothermal phase change. To describe non-isothermal
processes, we cannot rely on a functionϕ(t, T ). Rather, a form has to be used which relates
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the rate of phase change to the instantaneous state. Assuming that the additivity principle
holds (Cahn, 1956; Leblond and Devaux, 1984) a rate equation may be used of the form:

ϕ̇ = ϕ̇(ϕ, T ) (2.3)

After solution of the time from (2.2) and substitution into (2.1) the following rate equation
is derived:

ϕ̇ = (ϕ̄ − ϕ)
n

τ

(
ln

ϕ̄ − ϕ0

ϕ̄ − ϕ

)(n−1)/n

(2.4)

The time constantτ can be obtained from TTT diagrams (Figure 2.3) or estimated from
CCT diagrams (Figure 2.4) as outlined in Appendix B.
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Figure 2.3: Time Temperature Transformation (TTT) diagram of steel Ck45 (Wever and Rose,
1961)

2.2.2 austenite-pearlite transformation

In steel the main diffusion related transformation is the pearlite transformation. In the
austenitic phase (γ ) the solubility of carbon in iron is very good. Upon cooling belowTA3
the stability of the austenite drastically changes. Now the material consists of a mixture of
two phases, low carbon ferrite (α) on the one hand and high carbon austenite on the other
hand. The carbon content of the latter is given by the A3-line in Figure 2.1.

At temperatures below 727◦C (TA1) the carbon within the remaining austenite will form
a reaction with the iron Fe3C, so called cementite. This is a very hard but also brittle
phase. The cementite is dispersed in the ferrite matrix in globes or lamellae. The ferrite
with dispersed cementite lamellae is called pearlite. Pearlite contains approximately 0.8
% carbon. The amount of pearlite can be determined from the lever rule. In steel Ck45,
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Figure 2.4: Continuous Cooling Transformation (CCT) diagram of steel Ck45 (Wever and Rose,
1961)

which nominally contains 0.45 % C, at room temperature the equilibrium volume fraction
of pearliteϕ̄

p
0 = 0.45/0.8 = 56%. The remainder is ferrite.

One of our goals is the prediction of phase fraction distributions after laser hardening.
Laser hardening is characterized by a high power input and a short interaction time. Events
happen very fast and equilibrium states are usually not obtained.

In large regions of the heat affected zone austenization will occur, but for subsequent
homogenization not enough time is available. Locally low carbon austenite is still present
when cooling has already started. No carbon diffusion is required for it to transform back
to ferrite (Ashby and Easterling, 1984; Fariaset al., 1990; Ohmuraet al., 1991). Transfor-
mation starts instantaneously when the temperature drops below 910◦C.

It is necessary to distinguish between low carbon austenite and homogenized austeni-
te. As long as the homogenization is not complete, the low carbon austenite fraction is
conveniently treated as superheated ferrite, ferrite still present at temperatures at which,
according to the equilibrium diagram, it no longer should exist. To this ferrite fraction the
additivity principle is applied by strictly applyinġϕα = ϕ̇α(ϕα, T ). During cooling the
ferrite transformation then starts in the steeper part of the Avrami S-curve. Transformation
from austenite to ferrite is then possible even at high cooling rates.

To capture the delay in the transformations during heating as well as during cooling a
model was devised based on a carbon balance. This model ensures that during heating the
pearlite dissolves before homogenization of the austenite can occur. During cooling, ferrite
has to be formed first, before pearlite can form.
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heating

AboveTA1 the phase diagram indicates an equilibrium fraction for pearlite ofϕ̄p = 0. The
pearlite colonies transform to austenite with a high carbon content. The isothermal rate of
change of the pearlite fraction is described by the Avrami equation (2.4):

ϕ̇p = −ϕp np

τp

(
ln

ϕ̄
p
0

ϕp

)(np−1)/np

(2.5)

The small spacing of the cementite lamellae suggests that the pearlite transformation will
be very rapid. Experiments (Figure 2.6), however, show considerable superheating. This
can be explained by the cementite lamellae dissolving from their ends rather than by lateral
carbon diffusion (Ashby and Easterling, 1984), see figure 2.5.

Fe C3

γ

α

c
c

c

c
c

c
γ

α

Figure 2.5: Dissolution of pearlite by carbon diffusion from ends of lamellae after Ashby and
Easterling (1984).

The equilibrium fractions ferrite (̄ϕα) and austenite (̄ϕγ ) are determined from the phase
diagram. At temperatures aboveTA1, ϕ̄γ = c/cA3 andϕ̄α = 1 − ϕ̄γ . Herec is the carbon
content of the steel andcA3 is the content according to the A3-line.

However, until all the pearlite has been transformed into austenite, there is not sufficient
carbon available to transform the ferrite into austenite of the required carbon content. The
rate equation for theα−γ transformation is therefore modified. While pearlite is still present
the equilibrium fractions austenite and ferrite are corrected for the carbon deficiency:

ϕ̄
γ
s = ϕ̄γ

(
1 − ϕp

ϕ̄
p
0

)

ϕ̄α
s = ϕ̄α + (ϕα

0 − ϕ̄α)
ϕp

ϕ
p
0

(2.6)

The index s indicates superheating. The difference between volume and mass fractions is
neglected. Substitution into (2.4) yields:

ϕ̇α = (ϕ̄α
s − ϕα

) nα

τα

(
ln

ϕ̄α
s − ϕα

0

ϕ̄α
s − ϕα

)(nα−1)/nα

andϕ̇γ = −ϕ̇α − ϕ̇p

(2.7)
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Upon reaching a temperature of approximately 910◦C, the remaining ferrite transforms to
austenite with a low carbon content. By diffusion the carbon concentration will level out and
the austenite is homogenized (Ashby and Easterling, 1984). This is shown quantitatively in
a TTA diagram (Figure 2.6).
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Figure 2.6: Time-Temperature-Austenization (TTA) diagram of steel Ck45 (Orlichet al., 1973).
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cooling

During cooling of fully homogenized austenite a first transformation occurs when the tem-
perature drops belowTA3. Ferrite forms after local diffusion of carbon from the matrix. This
ferrite is usually labeled pro-eutectoid or primary ferrite (Krielaart, 1995). The equilibrium
fraction is again determined from the phase diagram using the lever rule:

ϕ̄α = 1 − c

cA3
(2.8)

This transformation is modeled by the Avrami equation (2.4):

ϕ̇α = (ϕ̄α − ϕα
) nα

τα

(
ln

ϕ̄α

ϕ̄α − ϕα

)(nα−1)/nα

(2.9)

Below TA1 the remaining austenite transforms to pearlite. The ferrite reaction usually does
not keep pace with the equilibrium as dictated by the temperature. The carbon content of the
austenite remaining atTA1 is not yet according to that of the eutectic mixture. The pearlitic
reaction is slowed down by the deficiency of the carbon. Therefore the equilibrium content
of the pearlite must be corrected for carbon deficiency:

ϕ̄
p
u = ϕ̄

p
0
ϕα

ϕ̄α
0

ϕ̇p = (ϕ̄p
u − ϕp) np

τp

(
ln

ϕ̄
p
u

ϕ̄
p
u − ϕp

)(np−1)/np
(2.10)

The index u indicates undercooling.

2.3 Martensite transformations

An expression for the amount of martensite which fits experiments very well is based on
the assumption that, as soon as the temperature drops below the Ms temperature, there
exists a linear relation between martensite growth and temperature decreaseϕ̇m = −β Ṫ .
This relation has to be corrected for the vanishing parent phase so that we end up with
ϕ̇m = −(ϕ

γ
Ms − ϕm)β Ṫ . Integration fromTMs yields the Koistinen and Marburger (1959)

equation:

ϕm(T ) = ϕ
γ
Ms

(
1 − eβ(T −TMs)

)
for T < TMs (2.11)

whereϕ
γ
Ms is the amount of austenite still present atTMs. The martensite-start temperature

depends to some extent on the austenization conditions (Fariaset al., 1990). This is caused
by grain growth at elevated temperatures, which limits the amount of potential nucleation
sites.

According to Zhao and Notis (1995) there is evidence that the martensite transformation
is also governed by (very fast) isothermal kinetics. Here, however, the general concept is
followed and martensite formation is treated as an athermal reaction. Reverse transformation
from martensite to austenite is assumed to be only possible at temperatures above Ms.
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2.4 Stress-transformation interaction

A phase transformation is usually accompanied by a change of the specific volume of the
material. Inhomogeneous temperature distributions and inhomogeneous transformations
will cause high stresses and sometimes excessive distortions and cracking of the workpiece.

The presence of stresses during phase transformations has two major effects, (i ) it
modifies the kinetics of the transformation and (i i ) it causes an irreversible strain even
in the presence of a small stress, termed transformation induced plasticity. An extensive
bibliography as well as additional experimental work on both aspects are given by Aeby-
Gautier (1985) and Deniset al. (1985)

2.4.1 modifications to the kinetics

The modification of the transformation kinetics has been a subject of many studies. The
classics in the field are the papers by Patel and Cohen (1953) on the effect of stress on
martensitic transformation and of Bhattacharyya and Kehl (1955) on bainite transformation.
An extensive literature review is given by Aeby-Gautier (1985) of which the highlights are
resumed by Simonet al. (1994). The martensite transformation in particular (Videauet al.,
1996; Liuet al., 2000b) but also the austenite-pearlite reaction (Veauxet al., 2001; Liuet al.,
2000a) have received attention in recent years.
The stress stateσσσ can be decomposed into a deviatoric stresss and a hydrostatic pressure
p:

σσσ = s − p1

p = −1

3
tr(σσσ ) = −1

3
σσσ : 1

(2.12)

Here1 is the second order unit tensor. A norm for the deviatoric stress is the equivalent
stress or Von Mises stressσeq:

σeq =
√

3

2
s : s (2.13)

In general the effect of the stress on the kinetics is divided into separate effects due to
hydrostatic pressure and stress deviator. By carrying out torsion tests as well as tension and
compression tests during transformation these two effects can be separated (Videauet al.,
1996).

hydrostatic pressure

The influence of hydrostatic pressure on both the austenite/pearlite and the martensite trans-
formation is qualitatively the same. A positive pressure impairs the transformation. This
appears as an overall lowering of the characteristic lines in the equilibrium phase diagram.
TA1 as well asTMs is lowered. For the pearlitic reaction this means that it evolves at lower
temperatures and therefore the overall kinetics is slower. For the martensite transformation
cooling to lower temperatures is needed to obtain comparable amounts of martensite.
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deviatoric stress

Under the action of deviatoric stresses similar effects are found for both the pearlite trans-
formation and the martensitic transformation. Both transformations are enhanced by a
deviatoric stress. In the case of martensite transformations an increase ofTMs is seen (Patel
and Cohen, 1953; Videauet al., 1996).
Pearlitic reaction times are considerably shortened (Bhattacharyya and Kehl, 1955; Aeby-
Gautier, 1985; Simonet al., 1994; Veauxet al., 2001).

kinetic model

The influence of the stresses on the kinetics as described above is partly incorporated in
the kinetic models used in this work. The stress influence on the kinetics of the pearlite
transformation during cooling is present as a stress dependent time constantτ in the Avrami
equation (2.4):

τ (T, σeq, p) = f (σeq, p)τ (T ) = τ (T ) exp(−Aτ σeq + Bτ p) (2.14)

The decrease inTA1 due to hydrostatic pressure is not implemented.
For the martensite transformation a correction is applied to the Ms temperature in the

Koistinen-Marburger equation (2.11):

TMs(σeq, p) = TMs0 + AMσeq − BM p (2.15)

HereTMs0 is the Ms temperature under stress-free conditions.

2.4.2 transformation induced plasticity

When a stress is applied, while a phase transformation occurs, a permanent strain results.
This also applies for stress levels way below the yield stress of the weakest phase (de Jong
and Rathenau, 1961; Greenwood and Johnson, 1965).

The first attempts to model this effect in numerical simulations employed an artificial
lowering of the overall yield stress in the transformation temperature range (Rammerstorfer
et al., 1981; Abbasi and Fletcher, 1985). More refined models, in which the increase in
transformation plasticity is linked to the progress of the transformation, were implemented
by Deniset al. (1985) and Sjöström (1985). Reviews of the literature are found in Aeby-
Gautier (1985) and Fischeret al. (1996).

Two mechanisms are held responsible for transformation plasticity, the Greenwood-
Johnson mechanism and the Magee mechanism. The classical analysis by Greenwood and
Johnson (1965) considers a phase with a volume mismatch growing in the original soft phase.
The superposition of the global stress field on the local field due to the mismatch facilitates
plastic flow of the soft parent phase. Only the total strain at the end of the transformation is
given:

εt p = 5

6

δv

v

σ

σy
(2.16)

Here δv/v is the volume strain during transformation;σy is the yield stress of the soft
parent phase. This expression fits very well to experiments for relative applied stress levels
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σ/σy < 0.5. Zwigl and Dunand (1997) extended the theory to include the non-linear
behaviour for 0.5 < σ/σy < 1.

For a three-dimensional stress state Equation (2.16) can be generalized to:

εεεt p = 3

2
K

s
σy

; with K = 5

6

δv

v
(2.17)

Several micromechanical (Leblondet al., 1989; Ganghofferet al., 1997) as well as experi-
mental (Aeby-Gautier, 1985; Videauet al., 1996) studies have been published to quantify
the transformation plasticity with progressing transformation. The results are summarized
in a general rate formula:

dt p = 3

2
K F ′(ϕ)

s
σy

ϕ̇ where F ′ = dF

dϕ
; F(0) = 0 andF(1) = 1 (2.18)

Hereϕ is the fraction of the growing phase. A list with different expressions forF ′(ϕ)

is summarized by Fischeret al. (1996). A practical and easily understood relation which
reflects the saturation of transformation plasticity due to the vanishing of the soft parent
phase is:

F ′(ϕ) = 2(1 − ϕ) (2.19)

This expression forF(ϕ) is adopted in this work.
The Magee mechanism explains transformation plasticity as the result of a preferential

crystal orientation of the product phase due to the applied stress. Especially the marten-
sitic transformation involves a considerable lattice shear, which can occur along different
potential habit planes (Patel and Cohen, 1953; Schumann, 1979). Due to the stress certain
directions along certain planes are favoured, which causes an overall strain. The lattice shear
can exhibit different complications such as twinning, which makes derivation of analytical
models difficult. Micromechanical finite element models have been reported by Ganghoffer
et al. (1991) and Fischeret al. (2000). For macromechanical modeling also Equation (2.18),
with appropriate values ofK is usually applied.

2.5 Composite constitutive relations

It is customary to calculate the yield stress of the mixture of the different phases by a linear
mixture rule (Inoue and Raniecki, 1978; Sjöström, 1985; Deniset al., 1987; Ronda and Oli-
ver, 2000). This is accurate enough when all coexisting phases are of comparable hardness.
Unfortunately the transformation which mainly dominates the final stress distribution, i.e.
the austenite to martensite transformation, involves the two extremes in phase hardnesses.
The martensite yield stress is typically an order of magnitude higher than that of austenite
so that a linear mixture rule is not appropriate. It is clear that the linear mixture rule, which
postulates identical strain in all involved phases constitutes an upper bound for the com-
pound yield stress. In reality the plastic strain will tend to concentrate in the softer phases,
making the overall response softer than according to linear mixing. This was investigated
for viscoplastic behaviour by Stringfellow and Parks (1991). Their final model is rather
complicated and the dependence on the phase fraction is presented in an implicit way.
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Leblondet al. (1986) postulated that as long as the phase fraction of the hard phase
is small the average deviatoric stress in all phases is equal. This they back up by finite
element simulations. They arrive at a modification of the linear mixture rule which requires
interpolation between data points of their finite element results which is not very practical.

In Appendix C an estimate is given based on a set of simple assumptions on the deforma-
tions of a soft matrix with periodically distributed small hard inclusions. An approximation
for the compound yield stress is given as:

σy = ϕασα
y + ϕpσ

p
y + ϕγ σ

γ
y + f (ϕm)σm

y

with: f (ϕm) = ϕm(C + 2(1 − C)ϕm − (1 − C)(ϕm)2)

where:C = 1.383
σ

γ
y

σm
y

(2.20)

The results using this equation are almost identical to the finite element results reported by
Leblondet al. (1986). This equation should only be used when the differences in hardness
between martensite and austenite are large. It has been derived by assuming all strain
concentrated in the softer phase. It is clear that application to a mixture of two phases with
equal yield stress will give incorrect results.

2.6 Plastic strain and recovery

A permanent strain of a crystal requires sliding or slip of the atoms along one or more habit
planes of maximum resolved shear stress. The work required to overcome the energy barrier
in the crystal is less when the atoms hop one after the other, rather than in concert. This
causes structural defects which are called dislocations and which move upon prolonged
straining.

For one crystal to strain, a number of slip systems has to be active. In a polycrystalline
metal these slip systems are generally not compatible among neighbouring grains. Extra
slip is required to enforce boundary compatibility. The movement of the dislocations is
impaired by imperfections of the crystal structure, such as precipitates, grain boundaries
and also other dislocations. During plastic flow, the dislocation density increases and the
dislocation mobility decreases as straining progresses. This is apparent from the increase
of the resistance against straining as a function of the applied strain, work hardening. To
capture this effect in this thesis a parameter is used which accounts for the dislocation density
due to cumulative plastic straining, the equivalent plastic strainεp.

At elevated temperatures, the work hardening effect diminishes. Following application
of a fixed strain rate, plastic flow commences at the initial (temperature dependent) yield
stress, but with further straining the stress soon reaches a steady state value. This indicates
that apart from dislocation movements, other dynamic effects also play a role. Due to
thermally activated atomic movements in the lattice, dislocations are continuously being
formed, reordered and annihilated. This effect depends exponentially on temperature (∼
exp(RT/Q), whereQ is an activation energy) and is called recovery. At high temperatures
apart from recovery also recrystallization and grain growth will occur.

A laser hardening cycle evolves extremely fast, leaving little time for dynamic effects.
This is offset by the high temperatures, which are reached in large parts of the heat affected
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zone. Recovery and recrystallization are important in the sense that when they occur,
the plastic history which is generated during the initial heating phase of the process, is
annihilated and plays no role during subsequent cooling (Honget al., 1998). It is modeled
as static recovery (Estrin, 1998) by adding a relaxation type term−crcε

p to the evolution of
the equivalent plastic strain.

2.7 Summary

In this section a number of topics from materials science which are relevant for transforma-
tion hardening simulations have been dealt with and have been cast into models suitable for
use in simulations. Most of these models are more or less standard for this type of simula-
tion. However, the laser hardening process involves a number of extra complications.
The model for the superheating of pearlite and ferrite deviates from the often advocated no-
tion that reaching the temperature A3 is a sufficient condition for the formation of austenite.
Rapid heating may cause incomplete austenization even aboveTA3 and this influences the
reverse transformation during cooling.
The stress dependence of the martensite transformation is important for prediction of the
amount of retained austenite. Retained austenite is a problem in the laser processing of
specific materials.
Since laser hardening involves a thermal cycle from room temperature to almost melting
temperature and back to room temperature it is important to include a recovery model. In
this way the plastic deformation generated during the initial stages of the process is annihi-
lated in locations where sufficiently high temperatures are reached.
Finally, the simple model for the composite yield stress of an austenite-martensite mixture
is more realistic than the popular linear mixing model.

Two phenomena have been treated in the literature but were not included here. At high
temperatures the average size of the austenite grains will increase. Small grains are annexed
by their bigger neighbours. The average grain size affects the transformation kinetics during
cooling. The second aspect is the bainite transformation. Bainite is a very fine phase which
has a hardness which is in between that of martensite and pearlite. In this thesis no distinction
is made between ferrite/pearlite and bainite. The emphasis is on properly predicting the
martensite fraction. When necessary, bainite transformation may be included using similar
kinetic equations as used for ferrite and pearlite.





3. Thermo-Mechanical Analysis with Phase
Transformations

In this chapter the equations which describe the interactions between stress, temperature
and phase change are derived.

First, the phase transformation is considered as an autonomous process influenced nei-
ther by the stress state nor by the temperature. It is shown how phenomena like latent heat,
transformation strain and transformation plasticity are described.
The resulting equations are all linearized rate equations. When these equations are inte-
grated over finite time steps additional terms appear which will be elaborated in Chapter
4.

3.1 Thermal analysis

The heat flow in a solid is described by Fourier’s law:

q = −κ∇T (3.1)

Hereq is the heat flow,T is the temperature andκ is the thermal conductivity. The tempe-
rature evolution is governed by the equation for conservation of energy:

−∇ · q + σσσ : d − ρ Ḣ = 0 (3.2)

whereρ is the mass density,H is the enthalpy,σσσ is the Cauchy stress andd is the deformation
rate. For solids it can be shown that the enthalpy is the dominant term in the internal energy.
The enthalpy is a summation of the enthalpies per phase:

H =
∑

i

ϕi H i (3.3)

Hereϕi is the volume phase fraction of phasei. For each fraction the enthalpy is a function
of the temperature, obtained by integration of the specific heatci

p(T ) as obtained from DSC
scans:

H i(T ) =
T∫

T0

ci
p(T ) dT + H i

0 (3.4)

21
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The rate of the enthalpy change is found from:

Ḣ =
∑

i

ϕi ci
pṪ +

∑
i

ϕ̇i H i (3.5)

The first term is the regular specific heat, the second term is the latent heat of phase transfor-
mation. The effect of mechanical dissipation has been shown by Leblondet al. (1985) to be
at least one order of magnitude lower than that of the latent heat and three orders lower than
the applied external heat. Therefore it has been neglected here. The resulting rate equation
of thermal equilibrium is:

ρcpṪ = −∇ · q − ρ Ḣϕ (3.6)

where:

ρcp =
∑

i

ϕiρi ci
p

ρ Ḣϕ =
∑

i

ρi H i ϕ̇i

3.2 Stress analysis

The equilibrium equation in the absence of inertia and body forces can be written as:

σσσ · ∇ = 0 (3.7)

Hereσσσ is the Cauchy stress tensor. When deformation gradients remain small, the rate form
of this equation is:

σ̇σσ · ∇ = 0 (3.8)

The stresses depend on the strains and the strains depend on the displacements. The theory
in this section is based on small strains. For most hardening calculations this is sufficient:

εεε = 1
2(u∇ + ∇u) (3.9)

The strain rate depends on the velocities:

d = 1
2(v∇ + ∇v) (3.10)

The total strainεεε is assumed to consist of a number of independent contributions:

εεε = εεεel + εεεpl + εεεth + εεεtr + εεεtp (3.11)

whereel is the elastic part,pl is the plastic strain,th is the thermal dilatation,tr is the strain
due to phase transformation andtp is due to transformation plasticity. The stress is assumed
proportional to the elastic strain:

σσσ = E : εεεel (3.12)
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HereE is the fourth order elasticity tensorE = 2G(I − (1/3)11) + kb11, whereG andkb
are the shear modulus and the bulk modulus. The elastic properties are assumed identical
for all phases and to depend on the temperature only. For the stress rate we then find:

σ̇σσ = E : del + Ė : εεεel

σ̇σσ = E : (d − dpl − dtp − dth − dtr) + Ė : E−1 : σσσ

σ̇σσ = E : (d − dpl − dtp − dth − dtr) +
(

1

G

dG

dT
s − 1

kb

dkb

dT
p1
)

Ṫ

(3.13)

3.2.1 transformation and thermal strain

The mass density can be written as a weighted sum of the phase fraction densities

ρ =
∑

i

ϕiρi (3.14)

The mass density of each fraction is a function of the temperature. The rate of change is
written as:

dρ

dt
=
∑

i

(ϕ̇iρi + ϕi dρi

dT
Ṫ ) (3.15)

The first term on the right hand side is the density change due to phase transformation, the
second term, due to thermal expansion. For isotropic materials density change and strain
are related by:

dε = −1

3

dρ

ρ
(3.16)

The strain rates due to phase transformation and thermal expansion are:

dtr = −1

3

∑
i

ρi

ρ
ϕ̇i 1

dth = −1

3

∑
i

ϕi

ρ

dρi

dT
Ṫ 1 = αṪ 1

(3.17)

Hereα is the phase fraction dependent coefficient of thermal expansion.

3.2.2 transformation induced plasticity

The usual generalization of the results of one-dimensional tests as performed by de Jong
and Rathenau (1961) and as described in section 2.4.2 to a multidimensional stress state is
to express transformation plasticity proportional to the deviatoric stress:

dtp = 3

2

∑
i

K i Fi ′ϕ̇i s
σy

(3.18)

The functionsFi (ϕi ) determine how the transformation plasticity varies during the course
of the transformation. The constantsK i depend on the chemical composition of the steel
and on the type of transformation. The values ofK i are either obtained experimentally or
estimated using the formula derived by Greenwood and Johnson (1965).
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3.2.3 constitutive equations

Here we focus on the description of plastic behaviour during phase transformation. The
derivation of equations for elastic behaviour is straightforward and its result is implicitly
included in the equations for plastic behaviour. The description of plastic deformation
is based on the Von Mises yield criterion with isotropic hardening. Isotropic hardening
is in general sufficient since at high temperatures recovery occurs and any plastic history
disappears.

Plastic deformation occurs when the deviatoric stress exceeds the yield surface:

�(s, εp, T, ϕ) = s : s − 2

3
(σy(ε

p, T, ϕ))2 = 0 (3.19)

Here the equivalent plastic strainεp is defined by:

εp =
t∫

0

ε̇p dt where ε̇p =
√

2
3dpl : dpl − crcε

p (3.20)

The last term is added to account for high temperature recovery (Section 2.6). Using classical
flow theory for plasticity, the plastic strain rate is given by:

dpl = 3

2

λ̇

σy
s (3.21)

Substituting this expression into (3.20) we find that:

λ̇ = ε̇p + crcε
p (3.22)

Differentiating the yield criterion (3.19) with respect to time and substituting (3.13) for the
stress rate and bearing in mind thats = σσσ − 1

3 tr(σσσ )1 and thats : 1 = 0 we obtain:

s : E : (d − dpl − dtp − dth − dtr) + 2

3
σ 2

y

(
1

G

dG

dT
− 1

σy

∂σy

∂T

)
Ṫ

− 2

3
σy

∂σy

∂εp ε̇p − 2

3
σy

∑
i

∂σy

∂ϕi
ϕ̇i = 0 (3.23)

Substitution of (3.17), (3.18), and (3.21) into Equation (3.23), while usings : E = 2Gs and
Equation (3.19) yields an expression forε̇p:

ε̇p = 1

1 + hε

(
1

σy
s : d + (

σy

3G

1

G

dG

dT
− hT)Ṫ −

∑
i

(
K i Fi ′ + hi

ϕ

)
ϕ̇i − crcε

p

)
(3.24)

where the normalized hardening parametersh(·) are defined as:

hε = 1

3G

∂σy

∂εp

hT = 1

3G

∂σy

∂T

hi
ϕ = 1

3G

∂σy

∂ϕi

(3.25)
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Substitution of this expression into (3.21) gives an expression for the plastic strain rate:

dpl = 1

1 + hε

3ss
2σ 2

y
: d + 1

1 + hε

s
2G

(
1

G

dG

dT
− 3GhT

σy

)
Ṫ

− 1

1 + hε

3s
2σy

∑
i

(
K i Fi ′ + hi

ϕ

)
ϕ̇i + hε

1 + hε

3s
2σy

crcε
p (3.26)

This in turn is substituted into (3.13) to yield the desired expression for the stress rate:

σ̇σσ = (E − 1

1 + hε

3Gss
σ 2

y
) : d

+
(

kb

∑
i

ϕi

ρ

dρi

dT
1 − 1

kb

dkb

dT
p1 + 1

1 + hε

(
hε

G

dG

dT
+ 3GhT

σy

)
s

)
Ṫ

+ kb

∑
i

ρi

ρ
ϕ̇i 1 + 1

1 + hε

∑
i

(
hi

ϕ − hε K i Fi ′) 3Gs
σy

ϕ̇i

− hε

1 + hε

3Gs
σy

crcε
p (3.27)

Or in shorthand:
σ̇σσ = Dε : d + cTṪ +

∑
i

ci
ϕϕ̇i − drcs (3.28)

The different terms are detailed:

Dε = E − 1

1 + hε

Y

cT = bT1 + dTs

bT = kb

ρ

∑
i

ϕi dρi

dT
− 1

kb

dkb

dT
p

dT = 1

1 + hε

(
hε

G

dG

dT
+ 3GhT

σy

)

ci
ϕ = bi

ϕ1 + di
ϕs

bi
ϕ = kb

ρi

ρ

di
ϕ = 1

1 + hε

(hi
ϕ − hε K i Fi ′)3G

σy

drc = hε

1 + hε

3G

σy
crcε

p

where the common notation for the yield tensorY is used:

Y = 3Gss
σ 2

y
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The stress rate is composed of four terms, a strain rate dependent part, a temperature rate
dependent part, a phase transformation dependent part and a relaxation part. Each term in
turn may be decomposed into a bulk term and a deviatoric term.

3.3 Summary

The thermo-plastic problem with phase changes is described by Fourier’s equation (3.1) and
the mechanical equilibrium equation (3.7):

q = −κ∇T

σσσ · ∇ = 0

The evolution of temperature and stress is governed by rate equations (3.6) and (3.28):

Ṫ = −1

ρcp
∇ · q − 1

cp
Ḣϕ

σ̇σσ − cTṪ = Dε : d +
∑

i

ci
ϕϕ̇i − drcs

By substitution of the first equation into the second, two coupled equations are obtained.
These can be used to set up a coupled system of equations for the heat flowq and the
displacementsu. This is shown in Section 5.2. It is more practical, however, to first solve
the thermal system and next the mechanical system with known temperatures. This is
suggested by the fact that the stresses do not appear in the thermal rate equation.

As we will see in Chapter 4 integration of the rate equations to incremental equations
results in a set of fully coupled equations.



4. Finite Time Steps

After one calculation time step, the displacement increments�u and the heat flow in-
crements vector�q are obtained. From these the local deformation increment�εεε =
sym(∇�u) and the local heat flow divergence∇ · (q + �q) are calculated. Based on these
the phase fraction increments�ϕi , the temperature increment�T and the stress increment
�σσσ are calculated by integration of the rate equations of Chapters 2 and 3.

Predictions for the increments�u and�q are calculated based on linearized constitutive
equations. When the integrations are based on these predictions, due to the non-linearity
the results will deviate from the predictions and residuals may be defined,Rq for the�q
equation andRu for the�u equation. Then, iterative correctionsδq andδu are calculated
from the residuals and linearized tangents in a Newton iteration process.

The integration of phase fractions is performed according to Section 4.1, Equations (4.1)
or (4.6). For integration of the temperature increment, Equation (4.12) from Section 4.2 is
used. The stresses are integrated using Equations (4.19) and (4.32) from Section 4.3.

The equations to be solved are non-linear. The integration procedures are linearized to
obtain consistently linearized tangents, which should guarantee satisfactory convergence of
the Newton iterations. The resulting expressions are Equations (4.2) or (4.8) for the phase
transformations, (4.13) for the temperature increment and (4.52) for the stress increment.

As a result two coupled equations for the stress increment and for the temperature
increment are obtained. In Section 4.5 these two equations are rewritten as a set of uncoupled
equations.

In this chapter increments over a whole step[tn−1, tn] are indicated as� f = f (tn) −
f (tn−1). Iterative updates are written asδ f = � f k − � f k−1 wherek is the iteration
sequence number.

4.1 Phase fraction increments �ϕ

The simplest way to integrate the phase fraction evolution equations is by multiplying the
ratesϕ̇, as determined by the state at the start of an increment, by the time increment�t .
For calculations with small time steps this explicit integration may be sufficiently accurate.
In this section, however, the implicit integration which is used for larger time steps is
elaborated.

Two distinct cases are again discerned when dealing with the phase fraction increment,
the martensite transformation and isothermal transformations.

27
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4.1.1 martensite transformation

The calculation of the martensite transformation increment is straightforward. The phase
fraction is a function of the temperature and of the stresses (ϕm(T,σσσ ) see Section 2.4.1).
Calculation of the phase fraction increment merely involves substitution of the temperature
and the stress at the end of the time step:

�ϕm = ϕm(T + �T,σσσ + �σσσ ) − ϕm(T,σσσ ) (4.1)

For the Newton iterations a linearized form of this equation is required. This linearized
equation is easily obtained by taking the gradient with respect to the temperature and the
stresses:

δϕm = ∂ϕm

∂T
δT + ∂ϕm

∂σσσ
: δσσσ (4.2)

For the Koistinen-Marburger equation with a stress dependence as in Equation (2.15) this
results in:

∂ϕm

∂T
= −β(ϕ

γ
Ms − ϕm)

∂ϕm

∂σσσ
=
(

3

2

∂ϕm

∂σeq

s
σeq

− 1

3

∂ϕm

∂p
1
)

= β(ϕ
γ
Ms − ϕm)

(
3

2
AM

s
σeq

+ 1

3
BM1

) (4.3)

4.1.2 diffusion controlled transformations

Diffusional transformations are governed by a kinetic equation which specifies the trans-
formation rate as a function of momentary phase fraction, temperature and stress:

ϕ̇ = ϕ̇(ϕ, T,σσσ ) (4.4)

At constantT andσσσ this can be integrated and the result is presented in an isothermal
Time-Temperature-Transformation diagram (Figure 2.3). This specifies the time required
to obtain a certain amount of phase fraction during isothermal (and iso-stress) conditions.
Note, however, that a TTT diagram does not describe a state functionϕ(t, T ).

Integration of (4.4) is carried out using the fictitious time method (Hildenwall and
Ericson, 1977). From the current fraction afictitious time is calculated which corresponds
to the time required to obtain this phase fraction during purely isothermal transformation at
the current temperature and stress:

t ′ = τ n

√
ln(

ϕ0 − ϕ̄

ϕ − ϕ̄
) (4.5)

The time increment is added and the final fraction is calculated as is shown in Figure 4.1:

�ϕ = (
ϕ(t ′ + �t) − ϕ(t ′)

)∣∣
T ,σσσ

(4.6)

For the Newton iterations the effect of temperature and stress variations is needed in a
linearized form. An approximate linearization is obtained by formally writing the integration
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Figure 4.1: Continuous cooling projected onto a CCT diagram and a TTT diagram.

of ϕ as:

�ϕ =
�t∫
0

ϕ̇ dt ≈
�t∫
0

(
ϕ̇|(T ,σσσ ) + ∂ϕ̇

∂T
Ṫ t + ∂ϕ̇

∂σσσ
σ̇σσ t

)
dt (4.7)

This yields the linearized tangent for�ϕ:

δϕ = 1

2

∂ϕ̇

∂T
δT �t + 1

2

∂ϕ̇

∂σσσ
: δσσσ�t (4.8)

To obtain an equation of similar form as the equation for martensite (4.2) and also for the
sake of brevity we write:

�ϕ = �ϕ|T ,σσσ

∂�ϕ

∂T
= 1

2

∂ϕ̇

∂T
�t

∂�ϕ

∂σσσ
= 1

2

∂ϕ̇

∂σσσ
�t

(4.9)

As has been indicated in Chapter 2 the temperature influences the equilibrium phase
fraction ϕ̄ as well as the reaction time constantτ . The stress mainly influences the time
constant. The derivative oḟϕ with respect toϕ̄ is evaluated from the approximate rate
equation (B.7). The derivative with respect toτ is trivial.

∂ϕ̇

∂ϕ̄
≈ (1 − 2n)(ϕ̄ − ϕ) + n(ϕ̄ − ϕ0)

n(ϕ̄ − ϕ)(ϕ̄ − ϕ0)
ϕ̇

∂ϕ̇

∂τ
= −ϕ̇

τ

(4.10)
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Using the definitions of the pressurep and the equivalent stressσeq and the relation for the
stress dependence ofτ (2.14), the derivatives of�ϕ to T andσσσ may be evaluated:

∂�ϕ

∂T
=
(

(1 − 2n)(ϕ̄ − ϕ) + n(ϕ̄ − ϕ0)

n(ϕ̄ − ϕ)(ϕ̄ − ϕ0)

∂ϕ̄

∂T
− 1

τ

∂τ

∂T

)
�ϕ

2
∂�ϕ

∂σσσ
= ∂�ϕ

∂p

∂p

∂σσσ
+ ∂�ϕ

∂σeq

∂σeq

∂σσσ
=
(

Bτ

3
1 − 3Aτ

2

s
σeq

)
�ϕ

2

(4.11)

For superheated ferrite during heating and undercooled pearlite during cooling extra terms
arise due to the correction to the equilibrium phase fraction for the presence of the other
phase (Section 2.2.2).

4.2 The temperature increment �T

The basis for the computation of the temperature increment is the energy conservation
equation (3.2).

ρ Ḣ = −∇ · q

In this section we concentrate on the left hand side. As far as the right hand side is concerned
for the time being a constant heat flow divergence is assumed:

∑
i

ρi (ϕi + �ϕi )(H i + �H i) −
∑

i

ρiϕi H i = −�t∇ · q (4.12)

This is a non-linear equation so a local Newton iteration is performed to simultaneously
solve�T and�ϕ. After substitution of (4.2) or (4.8) an iterative update is found as:

ρcpδT + ρhσσσ : δσσσ = −�t∇ · q − ρ�HT − ρ�Hϕ (4.13)

where:

ρcp =
∑

i

((
ϕi + �ϕi

)
ρi ci

p + ρi H i ∂�ϕi

∂T

)

ρhσσσ =
∑

i

ρi H i ∂�ϕi

∂σσσ

ρ�HT =
∑

i

ρi (ϕi + �ϕi )�H i

ρ�Hϕ =
∑

i

ρi H i�ϕi

The last term on the right hand side is mainly the latent heat of transformation. The first
term is an enhanced heat capacity, in which the dependence of the phase fraction increment
on the temperature is incorporated. Because the phase fraction increment also depends on
the stress increment part of this latent heat is included in the termρhσσσ : �σσσ .
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4.3 The stress increment �σσσ

The stress term is split into a deviatoric parts and a hydrostatic partp (pressure):

σσσ = s − p1 (4.14)

where:
p = −1

3 tr(σσσ ) = −1
3σσσ : 1 (4.15)

The strain partitioning of Equation (3.11) is applied to the strain increment:

�εεε = �εεεel + �εεεth + �εεεtr + �εεεpl + �εεεtp (4.16)

The strain increment is, just as with the stress increment, decomposed into a deviatoric strain
increment�e and a spherical volume strain�εv:

�εεε = �e + 1
3�εv1 (4.17)

The thermal strain�εεεth and the transformation dilatation�εεεtr are purely spherical con-
tributions which give an increment in the hydrostatic pressure. This is elaborated in the
following section. The plastic strain�εεεpl and transformation plasticity�εεεtp are deviatoric
contributions and are detailed in Section 4.3.2

4.3.1 the pressure increment

We first consider the spherical part of the strain increment�εv = tr(�εεε) = �εεε : 1. This
induces an increment in the hydrostatic pressure. To calculate it, we compare the pressure
at the start and at the end of an increment:

p = − kb(ε
v − (εεεth + εεεtr) : 1)

p + �p = − (kb + �kb)(ε
v + �εv − (εεεth + �εεεth + εεεtr + �εεεtr) : 1)

(4.18)

The elastic properties are assumed identical for all phases so that the bulk moduluskb only
depends on the temperature. Thenkb + �kb is the bulk modulus atT + �T . This gives
rise to an extra term in the equation for�p:

�p = −(kb + �kb)(�εv − (�εεεth + �εεεtr) : 1) + �kb

kb
p (4.19)

An expression for the contributions of the thermal strain and the transformation strain is:

�εεεth + �εεεtr = �εth+tr1 = 1

3

(
ρ

ρ + �ρ
− 1

)
1 = 1

3

−�ρ

ρ + �ρ
1 (4.20)

The final densityρ + �ρ is found from:

ρ + �ρ =
∑

i

(ϕi + �ϕi )(ρi + �ρi ) (4.21)
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It is useful to identify separate contributions due to temperature and phase fraction incre-
ments. A linear expression for�εth+tr is then obtained, which contains 3 terms:

�εth+tr = �εtr + α�T + f tr
σσσ : �σσσ (4.22)

where:

�εtr = −1

3(ρ + �ρ)

∑
i

�ϕiρi

α = −1

3(ρ + �ρ)

∑
i

(
ϕi dρi

dT
+ ∂�ϕi

∂T
ρi
)

f tr
σσσ = −1

3(ρ + �ρ)

∑
i

∂�ϕi

∂σσσ
ρi

The term�εtr is the autonomous transformation strain. The thermal expansion coefficient
α is enhanced with the temperature dependence of the phase fraction increment. The stress
dependence of the phase fraction increment is contained in the termf tr

σσσ .

4.3.2 the radial return method

When only elastic deformation occurs, the deviatoric stress can be calculated directly from
the strain deviator. We compare this deviatoric stress at the start and at the end of an
increment:

s = 2Geel

s + �s = 2(G + �G)(eel + �eel)
(4.23)

The increment is obtained when the initial value is subtracted from the final one:

�s = 2(G + �G)�eel + �G

G
s (4.24)

This incremental relation is used to compute the so-calledelastic trial stress st from which
the classical radial return mapping starts:

st = (1 + �G

G
)s + 2(G + �G)�e (4.25)

From this elastic prediction the plastic terms must be subtracted to find the final stress
deviators + �s which is denoted bys1:

s1 = st − 2(G + �G)�εεεpl − 2(G + �G)�εεεtp (4.26)

From here on we writeG instead of(G + �G) to indicate the current value ofG.
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transformation plasticity

The transformation plasticity increment is obtained from integration of the transformation
plasticity strain rate:

�εεεtp =
∫ �t

0
dtp dt (4.27)

Consistent with the radial return method for classical plasticity, the transformation plasticity
increment is also approximated using an Euler backward method. In this way instabilities
in the stress calculation as discussed by Oddyet al. (1992) are easily avoided:

�εεεtp = 3

2

∑
i

K i�Fi s1

σy1
(4.28)

Hereσy1 is the yield stressσy(ε
p + �εp, T + �T, ϕ + �ϕ).

∑
K i�Fi is evaluated using

Equation (2.19) and only for growing phases:∑
i

K i�Fi =
∑

i

K i (2 − 2ϕi − �ϕi )�ϕi ∀ i |�ϕi > 0 (4.29)

From now on we indicate this term asK�F . When only transformation plasticity and no
regular plasticity occurs, an explicit expression fors1 is found as follows:

s1 = σy1

σy1 + 3GK�F
st (4.30)

When this value ofs1 does not exceed the yield surface, it is the final value. Whens1 does
exceed the yield surface the radial return procedure must be executed fromst to correct for
plastic strain also.

plastic strain

In the radial return method the plastic strain for the whole time step is taken in the direction
of the final deviatoric stress:

�εεεpl = 3

2
�λ

s1

σy1
(4.31)

The value of the equivalent plastic strain increment is derived from the consistency condition,
i.e. that the final stress must satisfy the yield condition (3.19). After substitution of (4.28)
and (4.31) into (4.26) follows is an implicit equation fors1:(

1 + 3G

σy1
(�λ + K�F)

)
s1 = st (4.32)

After taking the norm of both sides, a scalar equation is obtained:

σy1 + 3G(�λ + K�F) = σeqt (4.33)

whereσeqt = √
3st : st/2 . The increment of the plastic multiplier�λ is linked to the

equivalent plastic strain increment�εp through Equation (3.22):

ε̇p = λ̇ − crcε
p
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This equation is integrated under the assumption of constantλ̇ andcrc:

�εpcrc�t = (�λ − εpcrc�t)(1 − e−crc�t ) (4.34)

which is rearranged as:

�λ = ccr�t

1 − exp(−crc�t)
�εp + εpcrc�t = (1 + frc)�εp + εpcrc�t (4.35)

where for smallcrc�t we have thatfcr ≈ crc�t/2. With this result the consistency iteration
to solve the non-linear scalar equation (4.33) is written as:

δεp = σeqt − σy − 3G(�λ + K�F)

3G(1 + hε + frc)
(4.36)

Under the assumption of constant temperature and constant phase fraction increment,
the increment of the equivalent plastic strain�εp may be iteratively calculated up to the
desired accuracy.

However, neither the temperature nor the phase fractions can be considered constant.
Both are coupled to the stress increment. This requires that a coupled set of equations, also
involving Equations (4.13) and (4.19) be derived.

4.3.3 consistency iteration

A relatively simple implementation of a consistency iteration is to use a staggered approach:

1 Calculate iteratively�ϕ and�T from (4.13) using current values for the stresses.

2 Calculate the pressure increment�p from (4.19).

3 Calculate the deviatoric stress increment per fraction�si from (4.32) while only
iterating for�εp using (4.36).

Repeat from step 1 until convergence is achieved.

A coupled Newton-Raphson type consistency iteration can be derived as follows. Assu-
me that aftern iterations a set of intermediate results(�Tn,�ϕi

n,�σσσ n) is available which
when substituted into (4.13), (4.19) and (4.33) gives rise to residual valuesRH(n), Rp(n) and
Rσ(n). Solve for an iterative update(δT, δϕi , δσσσ ). From Equation (4.13) we have:

ρcpδT + ρhpδp + ρhσeqδσeq = −RH (4.37)

where:

ρhp =
∑

i

ρi H i ∂�ϕi

∂p

ρhσeq =
∑

i

ρi H i ∂�ϕi

∂σeq

RH = �t∇ · q + ρ�HT + ρ�Hϕ
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From Equation (4.19) using (4.22):

bTδT + (1 − 3kbf tr
p )δp − 3kbf tr

σeq
δσeq = −Rp (4.38)

where:

bT = −3kbα − p

kb

dkb

dT

f tr
p = − 1

3ρ

∑
i

ρi ∂�ϕi

∂p

f tr
σeq

= − 1

3ρ

∑
i

ρi ∂�ϕi

∂σeq

Rp = �p + kb(�εv − 3�εth+tr) − �kb

kb
p

In order to obtain an equation forRσ write all variable terms in (4.33) in incremental form:

δσy + 3δG(�λ + K�F) + 3G(δλ + K F ′δϕ) − δσeqt = −Rσ (4.39)

For the different terms we already have:

δσeq = δσy = 3GhTδT + 3Ghεδε
p + 3Ghϕδϕ

δG = dG

dT
δT

δλ = (1 + frc)δε
p

δϕ = ∂�ϕ

∂T
δT + ∂�ϕ

∂σeq
δσeq + ∂�ϕ

∂p
δp

δσeqt = σeqt

G

dG

dT
δT

(4.40)

After substitution and sorting out terms withδT , δp and δσeq the following expression
remains:

STδT + Spδp + (1 + Sσ )δσeq = −Rσ (4.41)

where:

ST = 3G

(
K F ′ ∂�ϕ

∂T
− 1 + frc

hε

(hT + hϕ
∂�ϕ

∂T
)

)
− σy

G

dG

dT

Sp = 3G

(
K F ′ − (1 + frc)hϕ

hε

)
∂�ϕ

∂p

Sσ = 1 + frc
hε

+ 3G

(
K F ′ − (1 + frc)hϕ

hε

)
∂�ϕ

∂σeq

Rσ = 1

3G
(σy1 + 3G(�λ + K�F) − σeqt)



36 Finite Time Steps

This is the third equation. Summarizing:


ρcp ρhp ρhσ

bT 1 − 3kbf tr
p −3kbf tr

σeq

ST Sp 1 + Sσ






δT
δp

δσeq


 =




−RH
−Rp
−Rσ


 (4.42)

For thermo-mechanical computations with phase transformations, consistency iteration in-
volves the solution of a system of three coupled equations.

4.4 Consistent tangent

After having calculated consistent increments of temperature as well as stress, these can be
substituted into the respective balance equations in order to be checked for convergence.
Based on the unbalance, new estimates for the heat flow and displacement increments�q
and�u are calculated.

We assume that as a result of the previousm equilibrium iterations a set of intermediate
results(�qm ,�um) is available, from which temperatures, phase fractions and stresses
(T m , ϕm,σσσ m) are calculated. Now we solve for an iterative update(�qm +δq,�um +δu).

For the thermal problem, Equation (4.13) with coefficients evaluated with(T m , ϕm) is
used. The increment of the hydrostatic pressure is also easily expressed in the temperature
and strain variations using (4.19) and (4.22) with coefficients evaluated with(T m, ϕm):

δp = −kbδε
v + 3kbf tr

σσσ : δσσσ − bTδT (4.43)

Derivation of the consistent tangential stiffness of the deviatoric stress increment starts from
(4.33) which yields an expression for the variation of the equivalent plastic strainδεp:

δεp = − 1

1 + hε + frc

(
hT + 1

G

dG

dT
(�λ + K�F − σeqt

3G
)

)
δT+

− 1

1 + hε + frc
(K F ′ + hϕ)δϕ + 1

1 + hε + frc

s
σy

: δe (4.44)

where all coefficients and state variables are evaluated with(T m, ϕm ,σσσm). Next, (4.32) is
written in a differential form:

(
(
3δG

σy
− 3G

(σy)2 δσy)(�λ + K�F) + 3G

σy
(δλ + K F ′δϕ)

)
s+

+
(

1 + 3G

σy
(�λ + K�F)

)
δs = 2Gδe + 1

G

dG

dT
sδT (4.45)

Substitution of (4.44) and the relations in (4.40) into the above, yields the expression for
the variation of the stress deviatorδs:

δs = De : δe + dTsδT +
∑

i

di
ϕs

∂�ϕi

∂σσσ
: δσσσ (4.46)
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where using identical notations as in Equation (3.28):

De = 2Gσy

σy + 3G(�λ + K�F)
I − (1 + frc)σy − 3Ghε(�λ + K�F)

σy + 3G(�λ + K�F)

1

1 + hε + frc
Y

dT = 1

1 + hε + frc

(
hε

G

dG

dT
+ (1 + frc)

3GhT

σy

)
+
∑

i

di
ϕ

∂�ϕi

∂T

di
ϕ = (1 + frc)hi

ϕ − hε K i Fi ′

1 + hε + frc

3G

σy

This result is then combined with the pressure terms from (4.43) to obtain:

(
I −
∑

i

bi
ϕ1

∂�ϕi

∂σσσ
−
∑

i

di
ϕs

∂�ϕi

∂σσσ

)
: δσσσ − (bT1 + dTs)δT =

De : δεεε +
(

kb − 1

3

2Gσy

σy + 3G(�λ + K�F)

)
11 : δεεε (4.47)

An explicit equation forδσσσ is derived by inverting the prefactor. This can be done in closed
form. The phase fraction increment�ϕ is actually a function of the hydrostatic pressurep
and the equivalent stressσeq. For the partial derivative write:

∂�ϕi

∂σσσ
= −1

3

∂�ϕi

∂p
1 + 3

2

∂�ϕi

∂σeq

s
σeq

(4.48)

Substitution into (4.47) yields:

(
I − bp11 − bs1s − dps1 − dsss

) : δσσσ − (bT1 + dTs)δT =
De : δεεε +

(
kb − 1

3

2Gσy

σy + 3G(�λ + K�F)

)
11 : δεεε (4.49)

where:

bp = −1

3

kb

ρ

∑
i

ρi ∂�ϕi

∂p

bs = 3

2

kb

ρσeq

∑
i

ρi ∂�ϕi

∂σeq

dp = − 1

1 + hε + frc

G

σy

∑
i

((1 + frc)h
i
ϕ − hε K i F ′i )

∂�ϕi

∂p

ds = 1

1 + hε + frc

9G

2σ 2
y

∑
i

((1 + frc)h
i
ϕ − hε K i F ′i )∂�ϕi

∂σeq

The inverse of the prefactor is found from:

(I + c111 + c21s + c3s1 + c4ss) : (I − bp11 − bs1s − dps1 − dsss) = I (4.50)
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which yields:


c1
c2
c3
c4


 = 1

(1 − 3bp)(1 − 2
3dsσ 2

eq) − 2bsdpσ 2
eq




bp + 2
3σ 2

eq(bsdp − bpds)

bs
dp

ds + 3bsdp − 3bpds


 (4.51)

Substitute this into (4.49) to find:

δσσσ − cTδT = Dε : δεεε (4.52)

where:

cT =bT1 + dTs + 3bT(c11 + c3s) + 2
3dT(c21 + c4s)σ 2

eq

Dε = 2Gσy

σy + 3G(�λ + K�F)

(
I − 1

311
)

+ kb11

− (1 + frc)σy − 3Ghε(�λ + K�F)

σy + 3G(�λ + K�F)

1

1 + hε + frc
Y

+ 2Ghε

1 + hε + frc
(c21s + c4ss) + 3kb(c111 + c3s1)

This is a fully coupled consistently linearized equation for the stress update, valid for small
deformation gradients. The first three terms in the definition ofDε may be identified as
the regular consistent tangent modulus with small adaptions for transformation plasticity
(K�F) and plastic recovery (frc). The only modification toDε as well as tocT is the
addition of the last two terms which contain the coupling between phase fraction increments
and stresses.

4.5 Thermo-mechanical coupling

Our model now consists of two coupled equations (4.13) and (4.52).

ρcpδT + ρhσσσ : δσσσ = −�t∇ · δq

δσσσ − cTδT = Dε : δεεε
(4.53)

Neitherσσσ nor T will be primary variables in the final element model as derived in Chapter
5. Therefore both variables will be made explicit.

δT = − �t

ρcp + ρhσσσ : cT
∇ · δq − ρhσσσ

ρcp + ρhσσσ : cT
: Dε : δεεε

δσσσ = − cT�t

ρcp + ρhσσσ : cT
∇ · δq +

(
I − ρcThσσσ

ρcp + ρhσσσ : cT

)
: Dε : δεεε

(4.54)

These equations are suited for implementation in a finite element model. An obvious
implementation would be to formulate a fully coupled problem with bothδq andδu as
primary variables. A simpler implementation would be to formulate a staggered scheme by
suitably partitioning the coupled equations.

Here a partitioning is proposed in a thermal step without distortion (δεεε = 0) followed
by a mechanical step with constant heat conduction (δq = const.).
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4.6 Summary

In this chapter and in Chapter 3 constitutive equations were derived for the numerical analysis
of processes involving solid state phase transformations. In Chapter 3 rate equations (3.6)
and (3.28) were obtained by regarding the phase transformations as an autonomous process.

The phase transformations are governed by the temperature and the stress. The equation
for the martensite transformation has the character of a state equationϕm(T,σσσ ). The
diffusion controlled transformations from ferrite and pearlite to austenite (and back) are
described by rate equationsϕ̇(ϕ, T,σσσ ) the integration of which must be carried out with care.
Proper evaluation of stress and temperature dependence and inclusion into the constitutive
equations finally yields incremental equations (4.13) and (4.52) which are considerably
more complex than the rate equations of Chapter 3.

In Chapter 6 an effort will be made to asses how much of this complexity is required for
successful simulation of transformation hardening.





5. Finite Element Discretization

When a coupled solution of distortions and heat flow is required, the interpolations of
stresses and temperatures should preferably be of the same order (Oddyet al., 1990). For
simulation of the residual stress due to phase transformations a finite element program has
been written based on a discretization using quadratic triangular elements. This means
that the displacements are continuous and piecewise quadratic. Consequently strains and
stresses are discontinuous and linearly distributed per element.

In this chapter a finite element discretization of the heat conduction problem is shown
which is based on a discontinuous discretization of the temperature field. The heat flow
is the primary variable. The consistency of strains and temperatures is one reason for
choosing this discretization. A second reason is that the numerical treatment of the con-
vection equations which arise in the Arbitrary Lagrangian-Eulerian formulation (Chapter
7) and in the steady state formulation (Chapter 8) yields discontinuously interpolated state
variable fields. So a finite element method is required which can deal with discontinuously
interpolated temperatures.

The discretization of the equilibrium equations (3.7) is standard and will not be elabo-
rated on here.

5.1 Thermal analysis using heat flow elements

The unsteady heat conduction is governed by the set of equations (3.1), i.e. Fourier’s law for
the heat flow due to a thermal gradient and (3.6), i.e. the constitutive equation expressing
the temperature rate as a function of the heat flow divergence:

q = −κ∇T (5.1a)

ρcpṪ = −∇ · q − ρ Ḣϕ (5.1b)

The specific heat capacityρcp is found by summation over the phases, the heat source
term Ḣϕ contains the latent heat of transformation as explained in Chapters 3 and 4. The
boundary conditions may be any combination of prescribed heat flow (e.g. laser irradiation
or isolation), prescribed temperature or a mixed condition (e.g. convective heat transfer to
the environment):

q · n = q0 on� = �q (5.2a)

T = T0 on� = �T (5.2b)

q · n = γ (T − Te) on� = �e (5.2c)
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The common method to solve transient heat conduction is to substitute (5.1a) into (5.1b)
to obtain an equation exclusively inT . Here, however, Equation (5.1a) will be discretized to
obtain a system with the heat flowq as the primary variable. When the temperature is also
approximated by interpolation with temperature degrees of freedom as primary variables
this is called amixed method (Roberts and Thomas, 1991). In our implementation the
temperature is treated as a state variable which is to be evaluated and integrated locally.

Following the standard Galerkin procedure the first equation is written in the weak form.
The weight functions are the vector functionsr, wherer · n = 0 on�q:∫

V

r · q dV =
∫
V

−κr · ∇T dV ∀r (5.3)

We apply partial integration to the right hand side to obtain:∫
V

r · q dV =
∫
V

κ∇ · rT dV −
∫

�T∪�e

κrnT d� (5.4)

where rn = r · n. The boundary conditions on�T (5.2b) and�e (5.2c) are substituted into
(5.3) which yields:∫

V

r · q dV +
∫
�e

κ

γ
rnqn d� =

∫
V

κ∇ · rT dV −
∫
�T

κrnT0 d� −
∫
�e

κrnTe d� (5.5)

For discretization we choose interpolation functions such that the heat flow fieldq is con-
tinuous across element boundaries, whereas the temperaturesT are allowed to be discon-
tinuous. With reference to a two-dimensional discretization, the calculation domainV is
divided intoNe non-overlapping triangles (or elements)Vn such thatV = ∪Ne

n=1Vn. OnVn

q andr are approximated using interpolation functionsQk
n which are connected with nodes

(k) on edges and vertices of the element. The functionsQk
n and Qk

m are C0 continuous
across element edges and have the valueQk

n(xk) = Qk
m(xk) = 1 andQk

n(xl) = 0 for k �= l:

qn
h(x) =

∑
k

Qk
n(x)qk (5.6)

No explicit discretization ofT is needed, it may be evaluated at the integration points.

5.1.1 incremental formulation

For large time steps the explicit method of Section 5.1 is not sufficient. We have to incor-
porate the finite time steps into our equations. In order to achieve this we write Equation
(5.1) in an implicit form. We require that Fourier’s equation is satisfied at the end of the
time stept → t +�t . The temperature increment depends on the evolution of the heat flow
during the time step. This is written as a generalized mid point formula (Zienkiewicz and
Taylor (1991), Vol. 2, Ch. 10):

q + �q = −κ∇(T + �T )

ρcp�T = −∇ · (q + θ�q)�t − ρ�Hϕ

(5.7)
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In Zienkiewicz and Taylor (1991) an optimal value ofθ = 2/3 is recommended. We
substitute the second equation of (5.7) into the first:

�q − θ
κ�t

ρcp
∇∇ · �q = κ

ρcp
∇(∇ · q�t + ρ�Hϕ) (5.8)

In order to obtain a finite element model we write this in the weak form:

∫
V

r · (�q − θ
κ�t

ρcp
∇∇ · �q) dV =

∫
V

κ

ρcp
r · ∇(∇ · q�t + ρ�Hϕ) dV ∀r (5.9)

After applying partial integration, using the second line of (5.7) andsubstituting the boundary
conditions, we finally find:

∫
V

(
r · �q + θ

κ�t

ρcp
(∇ · r)(∇ · �q)

)
dV +

∫
�e

κ

γ
rn�qn d� =

−
∫
V

κ

ρcp
(∇ · r)(∇ · q�t + ρ�Hϕ) dV (5.10)

The computation of�T is performed element by element on the basis of Equation (4.12).
Non-linear terms are present in the (temperature dependent) material properties as well as
in the source term. This means that after adding�T to T , the residue of (5.1a) must be
determined and an iterative correctionδq to �q must be calculated.

5.2 Coupled thermo-mechanical analysis

In Chapter 4 the fully coupled constitutive equations for the temperature and stress incre-
ments were derived:

�T = −θ�t

ρc∗
v

∇ · �q − dTε

ρc∗
v

: �εεε − �t

ρc∗
v
∇ · q − ρ�H ∗

ρc∗
v

�σσσ = −cT
θ�t

ρc∗
v

∇ · �q + Dσε : �εεε + �σσσ ∗
(5.11)

where:

ρc∗
v = ρcp + ρhσσσ : cT

dTε = ρhσσσ : Dε

ρ�H ∗ = ρ�Hϕ + ρhσσσ : (cϕ�ϕ + sdrc�t)

Dσε =
(

I − ρcThσσσ

ρc∗
v

)
: Dε

�σσσ∗ = cϕ�ϕ + sdrc�t − cT

ρc∗
v

(∇ · q�t + ρ�H ∗)
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The thermal equation is discretized as in Section 5.1.1. The mechanical equilibrium
equations are discretized in the usual way:∫

V

w · ((σσσ + �σσσ ) · ∇)dV = 0 ∀w (5.12)

wherew is a vector weight function. After substitution of the constitutive equations, par-
tial integration and substitution of the boundary conditions, the following set of coupled
discretized equations is obtained:

∫
V

(
r · �q + θ

κ�t

ρc∗
v

(∇ · r)(∇ · �q)

)
dV +

∫
�e

κ

γ
rn�qn d�

+
∫
V

κ

ρc∗
v
(∇ · r)dTε : �εεε dV =

−
∫
V

κ

ρc∗
v
(∇ · r)(∇ · q�t + ρ�H ∗) dV (5.13a)

and:

−
∫
V

sym(∇w) : cT∇ · �q dV +
∫
V

sym(∇w) : Dσε : �εεε dV =

−
∫
V

sym(∇w) : (σσσ + �σσσ ∗) dV +
∫
�t

w · t d� (5.13b)

wheret is the prescribed traction on boundary section�t:

σσσ · n = t on�t (5.14)

5.2.1 staggered solution approach

The Equations (5.13) constitute a coupled system in the degrees of freedom�q and�u.
This can be solved by assembly of the full system and simultaneous solution of all degrees
of freedom. Alternatively an operator split may be applied by solving the thermal system
first and the mechanical system next. The isochoric thermal system is readily found from
(5.13a) by setting�εεε = 0:

∫
V

(
r · �q + θ

κ�t

ρc∗
v

(∇ · r)(∇ · �q)

)
dV +

∫
�e

κ

γ
rn�qn d� =

−
∫
V

κ

ρc∗
v
(∇ · r)(∇ · q�t + ρ�H ∗) dV (5.15)
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From the solution�q (with �εεε = 0), the temperature increment�T th, the phase fraction
increment�ϕth and the thermal stress increment�σσσ th are calculated. Next, the mechanical
problem is solved from (5.13b) with�q = 0:

∫
V

sym(∇w) : Dσε : �εεε dV = −
∫
V

sym(∇w) : (σσσ + �σσσ th) dV +
∫
�t

w · t d� (5.16)

and the final values of the increments�T , �ϕ and�σσσ are calculated.
The staggered solution approach as described here was implemented in the finite element

model. Each time step comprised several equilibrium iterations such that during every
iteration first an updateδq to �q was calculated. Next, a new displacement increment
�u + δu was calculated based on the current value of�σσσ th.

5.3 Summary

The equations of Chapter 4 were discretized in a finite element model. For the thermal
equations a discretization was chosen with the heatflowq as the primary variable. The
discretization of the mechanical equilibrium was carried out in a standard way, i.e. with
the displacementsu as primary variables. The temperatures, phase fractions, stresses and
strains were treated as secondary variables, only evaluated at the element integration points.
The coupled thermo-mechanical problem was implemented via a staggered approach.





6. Examples

6.1 Simulations of standard hardening tests

6.1.1 Jominy test

A well known method for determining hardenability is the so-called Jominy test. A 100 mm
long bar is heated to austenization temperature and held there for the required time. Next
it is quenched by applying a strong water jet to one of the end faces. The hardenability is
determined by measuring the hardness along the length of the bar.

When the test is carried out correctly the cooling only happens at the quenched face
and the temperatures will be more or less homogeneous in each cross section. This means
that a one dimensional model is sufficient to simulate it. The finite element model contains
32 triangular 6-node elements. It is biased towards the quenched face (Figure 6.1). The
material data are summarized in Appendix A. The simulation includes nonlinear material
properties as well as latent heat of phase transformation.

The main purpose of this calculation is to validate the data for the transformation kinetics.
To this end the resulting martensite distribution is compared to the experimental results from
the same source as the CCT data on which the kinetic parameters are based (Wever and Rose,
1961). This is shown in Figure 6.2. The agreement is satisfactory. The steady lowering of
the hardness between 20 and 50 mm is mainly due to presence of bainite in the actual results.
Bainite transformation is not included in the calculation model. The temperature history
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0 0.01

quenched
face

Figure 6.1: Element model for simulation of the Jominy test.
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Figure 6.2: Finite element results compared to data from Wever and Rose (1961).

for two points and one phase fraction history are shown in Figure 6.3. The irregularities in
the cooling due to release of latent heat are clearly visible.

For cooling down from 1050◦C to room temperature 1900 seconds are required. The
total analysis took 173 time steps which needed an average of 5 iterations to obtain an
accuracy of 0.001 of�q. The initial time step was 0.1 s. When during one step less than
4 iterations were needed the step length for the next time step was increased. When more
than 7 iterations were needed, the time step length was shortened. In general, quadratic
convergence was observed. However, when the ferrite/pearlite transformation starts locally
while the time step is too large the rate of convergence drops to first order.

6.1.2 transformation induced plasticity

The inclusion of transformation plasticity in stress calculations of transformation hardening
is known to have a considerable influence on the final results (Abbasi and Fletcher, 1985;
Denis and Simon, 1986). In the calculations of this section the model of transformation
plasticity is validated. A constant value of∇·q is prescribed to simulate continuous cooling.
Monitoring of the strain gives a so called dilatometer curve (Figure 6.4). The occurrence of
phase transformations is apparent from the deviation from regular linear thermal expansion.
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Figure 6.3: Temperature history at depths of 1 and 10 mm and phase fraction evolution at 10 mm
from the quenched face.
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Figure 6.5: Dilatometer curves with applied uniaxial stress. Transformation plasticity and modi-
fication of the kinetics during the martensite transformation.
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Figure 6.6: Dilatometer curves with applied uniaxial stress. Transformation plasticity and modi-
fication of the kinetics during the pearlite transformation.
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Figure 6.7: One-dimensional model of laser hardening.

When this test is repeated with an applied external stress, two phenomena are observed:
modification of the kinetics and transformation plasticity. Both effects are shown for the
martensite transformation in Figure 6.5 and for the pearlitic transformation in Figure 6.6.

For the martensitic transformation the Ms temperature which at zero stress is 355◦C
shifts to 360◦C for applied tensile stress of 30 MPa. The data, which are summarized in
Appendix A, are such that a similar compressive stress does not noticeably alter the Ms
temperature.

A similar phenomenon is visible in the simulation of the pearlite transformation (Figure
6.6). Apart from the transformation plasticity a slight rise in the temperature at which the
transformation starts can be seen in the curve with the tensile stress. The data are such that
hardly any change occurs when a compressive stress is applied.

6.2 Laser hardening

6.2.1 1-D model

The simplest model of laser hardening is a one-dimensional model (Figure 6.7). A prescribed
heat input of 25 MW/m2 is applied during 0.6 seconds to one side of a 10 mm thick slab.
For cooling after the laser pulse has been stopped, both on the bottom and at the top of the
slab, convective heat transfer to the environment is modelled with a transfer coefficientγ

= 100 W/m2K. To mimic extension of the model in the lateral direction, the side faces of
the model are thermally isolated. For structural calculations the side faces are constrained
to remain straight.

Two simulations, one with and one without influence of stress on phase transformation
are done. The results of the simulation without stress influence are taken as the reference.

In Figure 6.8 the temperature evolution of the top face is shown, together with the
phase fraction evolution. Notice the transformation behaviour at 1 mm depth. Although
a temperature above A3 is reached, not all ferrite transforms to austenite. As a result,
upon cooling already some austenite starts transforming back to ferrite even though the
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Figure 6.8: Temperature and phase fraction history at the irradiated face and at a depth of 1 mm
below the surface.
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Figure 6.9: Martensite fraction through the thickness the sample.

cooling rate is far in excess of the critical cooling rate. The under-shoot at the start of the
austenite transformation is caused by extrapolation from integration points, where the data
are calculated, to nodal points. The fraction of martensite and the residual stress in the
x-direction are shown as a function of depth below the surface in Figures 6.9 and 6.10.
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Figure 6.11: Residual distortion after laser processing, with and without stress influence (displa-
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Figure 6.12: Phase fraction history with stress influence.
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Figure 6.13: Two-dimensional model of laser hardening.

The results of the simulation with stress influence on the phase transformation are more
or less similar to the above results apart from a marked difference in the final distortion.
Without the stress influence the model predicts that the lasered face is convex; with stress
influence a concave surface results (Figure 6.11).

In this simulation the stress influence was implemented such that the phase fraction
increments were calculated with a constant stress during every time step equal to the initial
stress of that step. The phase fraction history is shown in Figure 6.12. It is apparent that this
implementation is rather unstable, which illustrates the necessity of properly implementing
stress dependence along the lines of Chapter 4. This also raises doubts about the validity of
the distortion results of Figure 6.11.

6.2.2 2-D model

The calculations of Section 6.2.1 are repeated using a two-dimensional model (Figure 6.13).
The main difference is that now there is also a thermal gradient in the lateral direction.
This results in a lower maximum temperature and an enhanced cooling rate after the laser
irradiation has been stopped (Figure 6.14). In Figure 6.15 the deformation after totally
cooling down is shown where the deformations are exaggerated by a factor 20. In Figure
6.16 a detail of the model is shown in which the extent of the martensitic region is indicated.
The fraction of martensite and the residual stresses in thex- andz-directions on the centre
line are shown as a function of depth below the surface in Figures 6.17 and 6.18.

6.2.3 comparison

Overall the temperatures in the 2-dimensionalcalculations are lower than in the1-dimensional
calculation. This can mainly be explained by the fact that in a 2-dimensional calculations a
thermal gradient exists also in the lateral direction. The lower maximum temperature that
is attained in the 2-D simulation obviously results in a lower hardening depth as compared
to the 1-D results. This is shown in Figure 6.19. Less obvious is the difference in the level
of the residual stress (Figure 6.20). An explanation may be that in the 2-D simulation the
expansion accompanying the martensite transformation happens in a thinner layer while the
bulk material is stiffer due to lower temperatures.
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Figure 6.14: Temperature and phase fraction history at the irradiated face and at a depth of 1 mm
below the surface.
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Figure 6.15: Deformation after cooling down (displacements scaled by a factor 20).
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Figure 6.17: Martensite fraction through the thickness of the sample.
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Figure 6.19: Martensite fraction through the thickness of the sample, comparison of 1-D and 2-D
results.
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6.3 Conclusions

The finite element model of Chapter 5, using the constitutive equations from Chapter 4 was
applied to simulations of laser hardening. Simulations of temperatures and phase fractions
which involved phase transformation kinetics, latent heat of transformation, superheating
of ferrite and supercooling of austenite, were performed. Good results were obtained while
the convergence of the computations was satisfactory.

Simulations of stresses and distortions were carried out including thermal dilatation,
dilatation due to phase change and transformation plasticity. Here also satisfactory results
were obtained. When the stress influence on the transformations is included, without adap-
ting the constitutive equations, the results showed some instability. This indicates that for
inclusion of stress influence a consistent implementation is necessary. This has not yet been
carried out but is recommended as future work. The high temperature plastic recovery has
not been implemented either. The literature should be searched or tests should be carried
out in order to obtain reliable material parameters for plastic recovery.

Comparison of the results obtained for one-dimensional and two-dimensional simulati-
ons shows considerable differences. This is mainly due to thermal diffusion in the lateral
direction. One-dimensional calculations, although useful for parameter studies, should
always be checked by two-dimensional or even three-dimensional simulations.
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7. Arbitrary Lagrangian Eulerian Method

7.1 Introduction

A straightforward Updated Lagrangian simulation of hardening with a scanning laser beam
requires repositioning of the heat flow boundary conditions for every calculation time step
to represent the movement of the heat source.

During and immediately after the passing of the laser source events happen in very rapid
succession. In order to capture this highly localized behavior the path of the scanning laser
must be paved with a very dense finite element mesh. A simulation performed in this way
is very time consuming.

Different strategies have been devised to cope with this type of simulation. One of
the most practical is the Arbitrary Lagrangian-Eulerian method (Liuet al., 1988; Benson,
1989). In the implementation as proposed by Huétink (1986) and as used in this work, each
calculation step is split into two phases. This is shown in Figure 7.1.

In the first phase, the Lagrangian phase, the element mesh remains attached to the
material. The evolution of the state variables is monitored and the state at the end of the
phase is calculated as explained in Chapter 5.

In the second phase, the Eulerian phase, the mesh is, broadly speaking, restored to its
original position with respect to the window attached to the moving source. The mesh is
not restored to its exact original position, but some allowance is made perpendicular to the
flow direction in order to capture movement of the free surfaces.

The values of state variables such as temperatures, stresses, strains and phase fractions
are now needed in the mesh at this new position. This update of state variables is expressed
as a convection with respect to the mesh at the end of the first phase. In this chapter only the
second phase is described. The Lagrangian first phase is identical to a transient calculation
step as treated in Chapter 5.

When the coupling between mesh displacements and material displacements is released,
two additions are needed to the Updated Lagrangian method:

• a strategy to calculate grid displacements, such that the mesh quality will remain
acceptable in terms of element distortion and boundary compatibility. This is treated
in Section 7.2;

• a method to make state variables available in the appropriate element integration
points. These mesh points will move independently from the material. A mapping of
the state variables is required, which can be cast in the form of a convection equation.
The remapping procedures will be treated in Section 7.3.
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Figure 7.1: Arbitrary Lagrangian Eulerian modeling of laser hardening.

The purpose of defining a separate velocity field for the grid is usually to prevent unac-
ceptable distortion of the element mesh. In our case the objective is to supply small enough
elements in the processing zone while being able to coarsen the mesh downstream.

7.1.1 implementation of the ALE method

Several different strategies to the implementation of the Arbitrary Lagrangian-Eulerian
method can be followed:

Coupled ALE Solve a coupled system which includes the material displacements and the
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grid displacements simultaneously. A consistent implementation requires that the
convective terms coming from the remap are also incorporated into the constitutive
equations.

Decoupled ALE First, solve the Updated Lagrangian step until convergence is reached.
Next, calculate the grid displacements and perform the remap of the state variables
(Stoker, 1999).

Semi-coupled ALE Perform iterations comprising a Lagrangian step, followed by the re-
positioning of the grid and the remap. The remap is carried out at each iteration
(Wisselink, 2000).

Each of these strategies has its own advantages and drawbacks. In the Coupled strategy
consistently linearized equations are solved, the Newton-Raphson iterations will have good
convergence. The number of unknowns in the system is doubled (um andug in Figure 7.2)
which more than doubles the computational effort.
In the Decoupled strategy iterations are also performed with a consistent system matrix but
now only for the material displacements. The consistency of the state variable field is lost
after the remap.
By carrying out a remap during every iteration the resulting state variable field will remain
consistent in the Semi-coupledstrategy, but now the iteration process is no longer consistent,
possibly resulting in slow convergence.
In this thesis the Decoupled strategy is used, mainly because it is the most easily implemen-
ted.

Material displacement um

Convective displacement uc

Grid displacement ug

ti

-

+ti

+ti-1

Figure 7.2: An Arbitrary Lagrangian Eulerian step,t−, before andt+ after mesh regularization.
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7.2 Mesh management

Here we adopt the method developed by Stoker (1999). Rather than calculating the new
locations of the mesh, the grid displacements are smoothened. The grid displacementug is
calculated with the objective if reducing mesh distortion. To this end it is required to obey
the Laplace equation:

∇2ug = 0 (7.1)

This equation tends to smoothen steep gradients in the grid displacement. The boundary
conditions are such that the mesh boundary follows the material free surface as is described
in Section 7.2.1. Since it is the velocity that is smoothened, an initial mesh refinement will
be largely conserved. A drawback is that the quality of the grid locations proper is not
guaranteed.

The implementationof Equation (7.1) can be achieved througha Galerkin discretization.
It is more economical, however, to use a node by node centering method, where in a number
of sweeps over all the nodes the grid displacement of each node is calculated as the average
of the grid displacements of its neighbours (Stoker, 1999).

7.2.1 free surface movement

umug

d

ti-1

ti

free surface

s

Figure 7.3: Grid displacement of a free surface node.

The grid displacements which are required for the grid to follow the free surface mo-
vements serve as boundary conditions to (7.1). The mesh is restricted in its movement
perpendicular to the flow direction. Therefore in each free surface node a direction vector
d is defined to which the grid movement is constrained. This is shown in Figure 7.3. The
grid displacement is constrained to be alongd.

ug = λd (7.2)

In the setup of Figure 7.1 an obvious choice ford would be they-direction base vector.
The parameterλ is solved such that the node ends up exactly on the parametrized free

surface. Quadratic elements are used, so the surface is described by piece-wise quadratic
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parameterizations. The solution ofλ requires an iterative procedure in whichλ is solved
simultaneously with a parameters, which locally determines the position along the free
surface line.

At the inflow and outflow boundaries no free surfaces exist. Here the grid displacement
is simply found as the projection ofum ond, see Figure 7.4:

ug = dd
|d|2 · um (7.3)

A choice ford could be along the tangent to the current position of the outflow (or inflow)
surface.

umug

d
outflow surface

uc

Figure 7.4: Grid displacement of an outflow surface node.

7.3 Remap of state variables

We direct our attention to an integration point of the element in its final position as shown
in Figure 7.2. Our ambition is now to find at this point the value of any state variable
f (x, t+i ), based on its valuef (x, t−i ) at the end of the Lagrangian step, wheref stands for
temperature, stress component, equivalent plastic strain or any other state variable.

As indicated in Figure 7.2 the material undergoes a displacementum(x), whereas the
mesh moves independently with a displacementug(x). The difference between the material
displacement and the grid displacement is called the convective displacementuc(x) =
um − ug. Whenuc is small, then the value off (x, t+i ), can be approximated by a first order
Taylor series expansion:

f (x, t+i ) = f (x − uc, t−i ) = f (x, t−i ) − uc · ∇ f (x, t−i ) + O(u2
c) (7.4)

The main difficulty when using (7.4) to calculate the convected values of the state variables
is, that these do not constitute a continuous field. Stresses and strains are only evaluated at
the integration points and are discontinuous over element boundaries. This also means that
the gradients of the state variables cannot be obtained from local differentiation, since this
disregards the jumps across the element boundaries. Therefore information about values in
neighbouring elements is required to construct a global gradient.
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Many methods for obtaining the values of the state variablesf (x, t+i ) have been publis-
hed. The method originally developed by Huétink (1986) (Huétinket al., 1990b) requires
the construction of a continuous field based on nodal averaging. In Boman and Ponthot
(2001) this is circumvented by defining a subgrid with the integration points as vertices. A
class of methods which do not require a continuous field, are the finite volume methods. Hu-
ertaet al. (1995) and Rodriguez-Ferranet al. (2002) use the Godunov method on a sub-grid
of finite volumes, where each volume contains one integration point.

In Section 7.3.2 a similar method is developed, however, this does not rely on a sub grid
but directly uses the existing mesh. The proposed method is based on theDiscontinuous
Galerkin method, which is a generalization of the finite volume method. First, the discon-
tinuous Galerkin method is introduced. Next, an extension based on a second order Taylor
expansion is shown which yields a far better accuracy at minimal additional costs.

In the ALE method there is no time scale involved with the convection of the data. Both
t−i andt+i represent the same instant in time. In order to comply with the standard treatment
of convectionan artificial time parameterτ is introduced, which maps the "interval"[t−i , t+i ]
onto[0,�t]. Likewise, a convective velocityvc = uc/�t is defined.

7.3.1 the discontinuous Galerkin method for convection

The choice for the discontinuous Galerkin method is attractive because it does not require
a continuous field for the discretization of the convection. Moreover, the result after con-
vection will again be discontinuous, which is in aggreement with the finite element theory.
The Discontinuous Galerkin method was introduced by Lesaint and Raviart (1974) and is
often used for computation of viscoelastic flow (Fortin and Fortin, 1989; Verbeetenet al.,
1998; Pichelin and Coupez, 1998) and compressible aerodynamic flow (Lomtev and Karni-
adakis, 1999; Baumann and Oden, 2000; Cockburn, 2001). Most convection schemes using
the Discontinuous Galerkin method are discretizations of the rate equation for transient
convection:

∂ f

∂ t
= −vc · ∇ f (7.5)

Here f (x, t) stands for any element variable, typically evaluated at the integration points,
vc is the convective velocity. The increment for finite time steps is then obtained by time
integration:

� f =
∫ �t

0

∂ f

∂ t
dt (7.6)

For accuracy high order time integration is used, e.g. a Taylor Galerkin approachby Pichelin
and Coupez (1998) or 2nd or 3rd order Runge-Kutta by Cockburn (2001). For stability
and monotonicity, limiters are frequently employed (Siegelet al., 1997; Cockburn, 2001).
Limiting procedures are (often a posteriori) non-linear operations, which have to be applied
to every separate variable. In our case we prefer an explicit method which needs no limiting
and which can be applied to all variables equally. The method of Section 7.3.2 fulfills this
requirement. This section serves to explain the general ideas of the discontinuous Galerkin
method applied to convection.
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one-dimensional convection

The discontinuous Galerkin Method will first be demonstrated on the one-dimensional
convection equation. Generalization to the multi-dimensional case is shown in Section
7.3.4.

We want to solvef (x, τ ), (x ∈ [0, L]; τ ∈ [0,�t]), such that:

∂ f

∂τ
+ vc

∂ f

∂x
= 0

f (0, τ ) = f0 and f (x, 0) = f (x, t−i )

(7.7)

In particular we are interested in the convective increment which is given by (7.4) as:

� f (x) = f (x, t+i ) − f (x, t−i ) ≈ −uc
∂ f

∂x
(7.8)

The weak form is obtained by multiplication with a test functionw(x) and integration over
[0, L]: ∫ L

0
w� f dx = −

∫ L

0
wuc

∂ f

∂x
dx ∀w (7.9)

After partial integration a global conservation equation is obtained with flux terms at the
boundariesx = 0 andx = L:∫ L

0
w� f dx =

∫ L

0

∂(wuc)

∂x
f dx + wuc f |x=0 − wuc f |x=L (7.10)

Now f0 is substituted forf atx = 0. When the partial integration is reversed the following
expression is obtained:

∫ L

0
w(� f + uc

∂ f

∂x
) dx + wuc( f − f0)|x=0 = 0 ∀w (7.11)

This is the weak form equivalent to:

� f + uc
∂ f

∂x
= 0 for x ∈ [0, L]

f = f0 for x = 0
(7.12)

The spatial domain[0, L] is partitioned intoNx intervals In = [xn−1, xn], wheren ∈
[1, Nx]. The field f as well as the increment� f are discretized onIn using discontinuous
base functionswn(x) (Figure 7.5):

f n
h (x, τ ) =

∑
k

wk
n(x) f n

k (τ )

� f n
h (x) =

∑
k

wk
n(x)� f n

k

(7.13)
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Figure 7.5: Discontinuous function discretization onIn .

Since thefh-field is assumed to be discontinuous across interval boundaries direct applica-
tion of (7.9) is not appropriate. The discretized solution in elementIn should satisfy:

� f n
h = −uc

∂ f n
h

∂x
f n
h (xn−1) = f n−1

h (xn−1)

(7.14)

We follow Lesaint and Raviart (1974) and weakly enforce both the differential equation on
In and the continuity offh at the upstream boundaryxn−1. Find� f n

h such that:∫
In

� f n
h wk

n dx = −
∫

In

uc(x)
∂ f n

h

∂x
wk

n dx − ucw
k
n( f n

h − f n−1
h )

∣∣∣
x=xn−1

∀wk
n (7.15)

After partial integration the jump term at the inflow boundary splits up into two flux terms,
an in-flux from the upwind element and an out-flux at the outflow boundary:∫

In

� f n
h wk

n dx =
∫

In

d(ucw
k
n)

dx
f n
h dx + ucw

k
n f n−1

h

∣∣∣
x=xn−1

− ucw
k
n f n

h

∣∣∣
x=xn

∀wk
n (7.16)

When a discretization using piece-wise constant functions is applied then the integral on
the right hand side will vanish. What remains then is an equation stating that the increment
is the balance of the fluxes across the inflow and outflow boundaries.

The main attraction of the discontinuous Galerkin method is apparent from the left hand
side of (7.16). The support ofwk

n is restricted exclusively to intervalIn . There is no coupling
with unknowns in other intervals and the resulting matrix is local. Moreover, when� f is
discretized using orthogonal polynomials the equations are uncoupled, the resulting matrix
is diagonal and solution is trivial. This is also true for linear interpolation per element,
based on function values in Gauss integration points as in Figure 7.5. Coupling with other
intervals is only through the boundary fluxes ofknown values f n−1

h (t−i ). The solution of
� f n

h can be done on an element by element basis.
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The accurate and stable solution of� f using this method requires a Runge-Kutta time
integration where the optimal orderof the integration is linked to the orderof the interpolation
functionswk

n (Hulsen, 1991). An alternative method was presented by Siegelet al. (1997)
in which first a convection over half the step was performed using only localfh values, i.e.
Equation (7.15) without the inflow boundary jump term. Next, the whole convection step
was calculated according to (7.16) with the values obtained from the first half step. In the
following section a method is developed which gives a similar result in one pass.

7.3.2 the second order discontinuous Galerkin method

In order to derive a higher order accurate discontinuous Galerkin method consider a so-
called space-time slab[0, L] × [t−i , t+i ] (Figure 7.6). Equation (7.7) is written in a weak
form over the space×time region:

∫ t+i

t−i

∫ L

0
w

(
∂ f

∂τ
+ vc

∂ f

∂x

)
dx dτ = 0 ∀w (7.17)

wherew(x) is a weighting function which only depends onx . Partial integration yields the
following balance equation:

∫ L

0
w( f (x, t+i ) − f (x, t−i )) dx =

∫ L

0

dvcw

dx

∫ t+i

t−i
f dτ dx +

∫ t+i

t−i
vcw f0 dτ

∣∣∣∣∣
x=0

−
∫ t+i

t−i
vcw f dτ

∣∣∣∣∣
x=L

(7.18)

Using (7.7), the evolution off as a function ofτ is written as (Donea, 1984):

f (x, τ ) ≈ f (x, t−i ) + ∂ f

∂τ
τ = f (x, t−i ) − vc

∂ f

∂x
τ (7.19)

After substitution of this expression into (7.18) and usinguc = vc�t we find:

ti

-

ti

+

x

τ

u (x )c n-1 u (x )c n

xn-1 xn

Figure 7.6: A convective step, in space-time;t−, before andt+ after mesh regularization.
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∫ L

0
w� f dx =

∫ L

0

d(wuc)

dx

(
f − 1

2
uc

∂ f

∂x

)
dx

+ wuc f0|x=0 − wuc

(
f − 1

2
uc

∂ f

∂x

)∣∣∣∣
x=L

(7.20)

where all values and gradients off are evaluated att = t−. Reversing the partial integration
yields:

∫ L

0
w

(
� f + uc

∂ f

∂x
− 1

2
u2

c
∂2 f

∂x2

)
dx + wuc

(
f − 1

2
uc

∂ f

∂x
− f0

)∣∣∣∣
x=0

= 0 (7.21)

The first term expresses the increment as a second order Taylor expansion. The second term
is the weakly enforced boundary condition atx = 0. The expression obtained is the weak
statement of:

� f (x) + uc
∂ f

∂x
− 1

2
u2

c
∂2 f

∂x2
= 0 for x ∈ [0, L]

f − 1

2
uc

∂ f

∂x
= f0 for x = x0

(7.22)

Similar approximations for conservation type equations have been derived by Oñate (1998)
and de Sampaio and Coutinho (2001) in the context of continuous Galerkin methods. In-
spired by this result the discretized field on elementIn is required to satisfy:

� f n
h = −uc

∂ f n
h

∂x
+ 1

2
u2

c
∂2 f n

h

∂x2(
f n
h − 1

2
uc
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(7.23)

This is written in a weak form:

∫
In

� f n
h wk

n dx = −
∫

In

(
uc

∂ f n
h

∂x
− 1

2
u2

c
∂2 f n

h

∂x2

)
wk

n dx

− ucw
k
n

(
( f n

h − 1

2
uc

∂ f n
h

∂x
) − ( f n−1

h − 1

2
uc

∂ f n−1
h

∂x
)

)∣∣∣∣∣
x=xn−1

∀wk
n (7.24)

After partial integration the jump term at the inflow boundary splits up into two flux terms,
an in-flux from the upwind element and an out-flux at the outflow boundary:
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The left hand side is identical to that of (7.16). The right hand side involves only known
values and gradients off n−1

h (t−i ) and f n
h (t−i ) so that explicit element by element solution

remains possible. The explicit procedure of Equation (7.25) is equivalent to the result of
the two pass procedure of Siegelet al. (1997).

The improved stability with respect to the scheme of Equation (7.16) stems from
the second order boundary fluxes as well as from a naturally arising diffusion like term
(1/2)u2

c(∂
2 f/∂x2). In 2-D or 3-D this term takes the form of stream-line diffusion.

7.3.3 element-wise point-implicit scheme

The scheme of (7.25) is stable for Courant numbers (Cr)< 0.7 (Figure 7.10). For many
applications this is already sufficient. To extend the stability region we follow Baumann and
Oden (2000) and apply an element-wise point-implicit scheme. To this end implicit terms
(marked withα andβ) are added to selected terms coming from weight functions, whose
support is the domain of one element, with respect to the degrees of freedom associated
with that same element:∫
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n dx =
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(7.26)

Note that the implicit terms are only added to the terms in the integral. Adding these terms
to the f n

h terms at the outflow boundaryxn, as was proposed by Baumann and Oden (2000)
will make the method non-conservative. When this is remedied by also adding implicit
terms to thef n−1

h terms at the inflow boundary, again a conservative method is obtained,
but then the local character is lost.

Numerical experiments indicate thatα = −1/60 andβ = 2/3 is a good choice. A
priori it may be expected that theβ-term will have a stabilizing effect. This term adds an
additional (streamline) diffusion within each element. A small negative value forα seems
to prevent the system from becoming over-damped.

After collecting all terms with� f in the left hand side, the resulting matrix is no longer
diagonal nor symmetric; however, it still remains local. The explicit element by element
solution is still possible.

7.3.4 multi-dimensional convection

In two (or three) dimensions (7.22) is written as

� f = −uc · ∇ f + 1
2ucuc:∇∇ f + O(u3

c) (7.27)

The second order term in the right hand side has the character of stream-line diffusion. The
domain is divided into non-overlapping triangles on whichf and� f are discretized similar
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to Equation (7.13). Equation (7.27) is written in the weak form while weakly enforcing
continuity over the inflow boundary to obtain the counterpart of (7.24):∫
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Here�−
n is defined as that part of the boundary of thenth element whereuc · n < 0, where

n is the outward pointing normal on the element boundary.f n(−)
h Is the value off in the

elements which share boundaries�−
n with thenth element, the upwind elements.

After partial integration the terms withα andβ are added like in Eq. (7.26) and all terms
containing� f are collected on the left hand side:∫
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where�+
n is defined by(�−

n ∪ �+
n = �n, �−

n ∩ �+
n = ∅).

7.3.5 accuracy of the convection scheme

The usefulness of the proposed method for Arbitrary Lagrangian Eulerian methods depends
on whether large enough convective steps are possible without any stability problems or
significant deterioration of the accuracy. The stability and accuracy are demonstrated by
simulations of pure advection with a constant and a varying velocity field. Application to
forming processes was reported in Geijselaers and Huétink (2000).

advection of a Gaussian bump

A rectangle of size 2x3.2 was divided into 1318 elements. The initial value of the field to
be convected was a discontinuous least squares approximation of a Gaussian bump (Figure
7.7):

f = 0.014(x2+y2) (7.30)

This bump was convected over a distance of 2 inx−direction. In Figure 7.8 the final
distribution is shown when the advection is done in 81 steps. The maximum Courant
number in any element was 0.95. The Courant number is defined as:

Crn = 1

2Vn

∫
�n

‖uc · n‖ d� ; Crmax = max(Crn) (7.31)
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Figure 7.7: Advection of a Gaussian bump, the initial distribution.

In Figure 7.9 the evolution of the maximum and minimum values of the nodal averagedf
is given. No instabilities are visible. The maximum value remains close to 1, while there is
no undershoot. The error in the phase velocity is less than 10−5.

A series of similar runs with different step sizes were done in order to asses the accuracy
of the method in relation to the maximum Courant number. In Figure 7.10 the L1 and the
L2 norms of the error at the end of the advection are shown. These norms are defined as:

E1 =
∫
V

| fh − f ref| dV/

∫
V

| f ref| dV

E2 =
√√√√∫

V

( fh − f ref)2 dV/

∫
V

( f ref)2 dV

(7.32)
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Figure 7.8: Advection of a Gaussian bump, the final profile (Crmax = 0.95).
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Figure 7.9: Evolution of minimum and maximumf value during advection (Crmax = 0.95).

Also shown in Figure 7.10 are these error norms for the 2nd order method without the
implicit terms. Inclusion of implicit terms according to (7.26) extends the stability region
by approximately 30 %.

The smaller the step size, the smaller the error per step. However since more steps are
required for smaller step sizes the cumulative error is not a monotonous function of the step
size. An optimal step size exists which is approximately 0.2 for the second order method
and which shifts to approximately 0.9 for the second order method with implicit terms. In
Figure 7.11 the L2 norms of the errors of several explicit discontinuous Galerkin methods
are compared.
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Figure 7.10: Error of the final distribution as a function of the maximum Courant number
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Figure 7.12: Advection of a Gaussian bump in a non-uniform velocity field, the final distribution
(Crmax = 0.95).

To demonstrate pure advection in a varying velocity field, the simulation of advection
of a Gaussian bump was repeated with velocities defined as:{

vx
vy

}
=
{

1 + 1
2 cosπ(x − 1)

πy
2 sinπ(x − 1)

}
,

1

2
< x <

3

2
;
{

1
0

}
elsewhere (7.33)

This is a divergence free velocity field. In order to avoid spurious inflow from the sides, the
boundaries were adapted to follow the stream-lines.
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Figure 7.13: advection of a sharp front (Crmax = 0.92).

A distance of 2 was covered in 93 steps. The maximum Courant number in any element
was again 0.95. The resulting distribution is shown in Figure 7.12.

a sharp front

In these calculations the performanceof the method in the presence of a sharp front is shown.
The initial distribution isf (x, 0) = 0. At the inflow boundary a condition (f0(y) = 0, y <

−.053; f0(y) = 1 elsewhere) is prescribed. The result after 85 steps (Crmax = 0.92)
is shown in Figure 7.13. The front is typically smeared out over 3 elements. Loss of
monotonicity is visible as a slight Gibbs effect.

conclusions

A convection scheme has been developed which is based on the discontinuous Galerkin
method. The data to be convected are assumed to be linearly interpolated per element
and may be discontinuous across element boundaries. The resulting field after convection is
linear per element and discontinuous across element boundaries. The scheme is explicit and
is suited for element by element treatment. It is stable and accurate for Courant numbers
up to 0.9.

7.4 Simulation of steady laser hardening

A steady state model of laser hardening was set up which had identical process parameters
as the the models in Chapter 6. The finite element model is show in Figure 7.14; it consists
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Figure 7.14: The finite element model for ALE calculations

of 892 nodes, 401 six-node triangular elements and 67 heat convection elements on the top
and bottom faces.

Results were obtained for a thermal calculation with phase transformations, the inclusion
of distortions has not yet succeeded. For the thermal calculation essentially a transient
analysis as in Chapter 6 was performed in which every transient step was followed by a
convection step. The transient calculation was prolonged until a steady state was reached.
Convection was applied to the temperatures as well as to the phase fractions.

During the calculation a constant time step of 0.0153 s was used. This results in a
convective displacement of 0.153 mm per step. The maximum Courant number in any
element is 0.8.
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Figure 7.15: Temperature distribution during steady laser hardening

The temperature and the martensite distributions are shown in Figures 7.15 and 7.16.
In Figure 7.17 the temperature and the phase fraction distributions along the top face are
shown. The temperature distribution is quite smooth. The phase fractions give a very ragged
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Figure 7.16: Martensite distribution during steady laser hardening

line. This is mainly caused by the extrapolation from integration points to nodal points.
A second reason is very sharp gradients which have to be resolved within only one or two
elements. As was shown in Section 7.3.5 this causes some local over-shoot. The martensite
contents appears to be diminishing towards the end of the slab. This is an artifact which is
caused by the coarsening of the grid.

Comparison of the temperature distribution along the top with the evolution during a
stationary laser pulse shows that in the ALE calculation a lower value of the maximum
temperature is reached. This is most probably due to the coarser mesh used in the ALE
computation.

7.5 Conclusions

The Arbitrary Lagrangian-Eulerian method was applied to the process of steady laser har-
dening. Results were obtained for temperatures and phase fractions; the stress calculation
was not yet implemented.

A new convection algorithm was developed for the remap of state variables. It is based
on a second order Taylor expansion which was discretized by the discontinuous Galerkin
method. It has the advantage of being able to cope with state variable fields which are
discontinuous across element boundaries.

The convection method was shown to be stable and accurate for Courant numbers upto
0.9. The method is explicit and suitable for element by element calculation of the remap.
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Figure 7.17: Temperature and phase fraction distributions along the top face

0

400

800

1200

te
m

p
e

ra
tu

re
(

C
)

o

0 0.2 0.4
x-coordinate

0 2 time (s)4

ALE steady state

2D laser pulse

Figure 7.18: The temperature evolution at the top face; comparison of 2-D and ALE results



80 Arbitrary Lagrangian Eulerian Method

0 5 10
0

0.2

0.4

0.6

0.8

1.0

p
h
a
s
e

fr
a
c
ti
o
n

depth (mm)

ALE steady state

2D laser pulse

Figure 7.19: Martensite distribution at the outflow boundary



8. A One-Step Steady State method

In the previous chapter the temperatures and phase fractions due to steady state laser har-
dening were simulated using an essentially transient method. When the fields caused by
a scanning laser are viewed in a reference frame which moves with the heat source, the
spatial distribution of the field variables remains constant: it is a steady state process. In
this chapter an attempt at modelling steady laser hardening is made in which the steadiness
of the process is exploited.

v

v

xm

ym

x

y

control box

laser
torch

Figure 8.1: A control box for steady state laser processing.

A control box is fixed to the laser and the material is assumed to pass through this box
(Figure 8.1). The material entering the box has properties constant in time. The reference
systemxm is attached to the material, the Eulerian framex is attached to the control box.

In the steady state the material derivative of any field variablef is found as:

ḟ = v · ∇ f (8.1)

81
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The time coordinate is replaced by a spatial coordinate. It is proportional to the distance
along a streamline. A time derivative becomes a derivative along a streamline, integration
in time is replaced by integration along streamlines. This type of modelling is termed a
Eulerian description.

Eulerian methods for thermal analysis are quite common. When a continuous discre-
tization of the temperature field is used these methods rely on the SUPG method (Brooks
and Hughes, 1982) to suppress the instabilities which occur when the convection becomes
dominant. A discretization with discontinuous temperatures which is inherently stable has
been reported by Baumann and Oden (1999).

The mechanical problem is far from trivial. Most Eulerian simulations for structural
problems such as rolling or extrusion use velocities as primary variables and viscoplastic or
elasto-viscoplastic material behaviour (Gu and Goldak, 1994; Hacquinet al., 1996; Ruan,
1999). Efforts along this line to include elasto-plastic material behaviour have invariably
encountered stability problems (Thompson and Yu, 1990).

A different method, proposed by Balagangadhar and Tortorelli (2000) for rolling and
extrusion and extended to steady thermal processing in Balagangadharet al. (1999) uses
displacements rather than velocities. It is called “Displacement Based Reference Frame
Formulation”. In Shanghvi and Michaleris (2002) it has been used for simulation of laser
processing. It will also be adopted here.

8.1 The displacement based reference frame formulation

xx0

Reference configuration Deformed configuration

v0 v

Q

Figure 8.2: Steady state laser processing in the displacement based reference frame formulation.

Consider a steady state laser process as shown in Figure 8.2. An attractive way of
analyzing this process arises when we compare an identical slab of workpiece material at
two different instances in time. The reference configuration is defined when the slab has
not yet entered the work zone of the process. The deformed configuration is defined when
the volume under consideration has, at some later time, entered the work zone and is being
processed.

Concentrating on the mechanical problem the following steps are part of a calculation
using the displacement based formulation:

• Comparison of the locations of “identical” material points in both configurations
directly yields the deformation gradient.

• Suitable differentiation of the deformation gradient along the streamlines yields a
deformation rate.
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• This deformation rate is then used to calculate a plastic deformation rate.

• Integration of the plastic deformation rate along the streamline yields the plastic
deformations.

• The elastic strains are found after subtracting the plastic deformations from the actual
deformations. Then the stresses are known.

• These stresses are used to check whether the deformed configuration is indeed in
equilibrium. When this is not the case, the locations of the material points are updated
and the calculation is reiterated.

Balagangadharet al. (1999) presented an implementation in which temperatures, displa-
cements and also plastic strains and the equivalent plastic strain appear as primary variables.
All these variables are nodal variables.

In our implementation we used only displacements and heat flows as primary variables.
The thermal problem with the phase transformations was solved first. Next, the distortions
were calculated while keeping the temperature and the phase fraction distributions constant.
The influence of the stresses on the phase transformations was not yet implemented.

8.2 Governing equations

The governing equations used were derived in Chapters 2 and 3. Here we summarize the
most relevant expressions.

8.2.1 phase transformations

The evolution of diffusion related transformations is described by the Avrami equation (2.4)
in rate form:

ϕ̇ = ϕ̇(ϕ, T ) (8.2)

The martensite transformation is described by the Koistinen-Marburger relation (2.11) also
written in rate form:

ϕ̇ = dϕ

dT
(ϕ, T )Ṫ (8.3)

The final phase content is found by integration along the streamlines:

v · ∇ϕ = ϕ̇

ϕ = ϕ0 at�− (8.4)

where�− is the inflow boundary of the domain.

8.2.2 mechanical equilibrium

The mechanical equilibrium equation in the absence of body forces is:

σσσ · ∇ = 0

σσσ · n = t on�σ

u = u0 on�u

(8.5)
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The strain is the summation of an elastic strain, a plastic strain and contributions from
transformation strain, thermal dilatation and transformation plasticity:

εεε = εεεel + εεεpl + εεεtr + εεεth + εεεtp (8.6)

The sum of the thermal dilatation and of the transformation strain is:

εεεtr + εεεth = ( 3
√

ρ0/ρ − 1)1

where: ρ(ϕ, T ) =
∑

i

ϕiρi (8.7)

whereρi(T ) is the density of phasei. The transformation plasticity is linked to the deviatoric
stresss Equation (3.18). The description of plastic deformation is based on the Von Mises
yield criterion with isotropic hardening Equation (3.26). Combining these yields an equation
for the sum of the plastic and transformation plastic strain rate components:

dpl + dtp = 1

1 + hε

3ss
2σ 2

y
: d + 1

1 + hε

s
2G

(
1

G

dG

dT
− 3GhT

σy

)
Ṫ

+ 1

1 + hε

3s
2σy

∑
i

(
hε K i Fi ′ − hi

ϕ

)
ϕ̇i + hε

1 + hε

3s
2σy

crcε
p (8.8)

The plastic strain rate and the transformation plasticity rate per fraction are integrated along
the streamlines to obtain the plastic strain:

v · ∇(εεεpl + εεεtp) = dpl + dtp

εεεpl + εεεtp = 0 at�− (8.9)

This is a scalar equation, which applies to every component of the tensors. After integration
of the plastic strain rates to plastic strains, the stress is calculated:

σσσ = E : (εεε − εεεpl − εεεtp − εεεth − εεεtr)

= E : εεε − 2G(εεεpl + εεεtp) − 3kb(ε
th + εtr)1

(8.10)

8.2.3 thermal equilibrium

The heat flow is calculated according to Fourier’s equation:

q = −κ∇T

q · n = q0 on� = �q

T = Te on� = �T

q · n = γ (T − Te) on� = �e

(8.11)

The equation of conservation of energy (3.6) is used to calculate the temperature rate:

ρcpṪ = −∇ · q − ρ Ḣϕ (8.12)
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To obtain the temperatures the temperature rate has to be integrated. For a steady state
process the time integration is again replaced by an integration along the streamlines:

v · ∇T = Ṫ

T = T0 on�− (8.13)

8.3 Discretization

8.3.1 convection equation

The streamline integration of any quantityf , be it a strain component, phase fraction,
equivalent plastic strain or temperature, is described by the convection equation:

v · ∇ f = ḟ (8.14)

As is apparent from Figure 8.2 locating the streamlines in the reference configuration is a
trivial task. Using the deformation gradientF Equation (8.14) can be transformed to the
undeformed configuration:

v · ∇ f = v · FT · F−T · ∇ f = v0 · ∇0 f = v0
∂ f

∂x0
(8.15)

In the reference configuration the velocity is constant and all streamlines are parallel to the
x-axis. Therefore all streamline integration is performed in the reference configuration. A
very stable discretization of the convection equations (8.9) and (8.13) is the discontinuous
Galerkin method (Fortin and Fortin, 1989). The fieldf is as in Section 7.3.2, discretized
using discontinuous base functionswm(x):

f m
h (x) =

∑
k

wk
m(x) f m

k (8.16)

Since the field to be solved for is discontinuous, the jump at the inflow boundary of every
element is weighted upon discretization (cf. Equation (7.15)).

v0

∫
Vm

wk
m

∂ f m
h

∂x0
dV − v0

∫
�−

m

nxw
k
m( f m

h − f m(−)
h ) d� =

∫
Vm

wk
m ḟ dV ∀wk

m (8.17)

Here�−
m is defined as that part of the boundary of themth element where thex-component

of the outward pointing normal to the element boundarynx < 0. Here alsof m(−)
h is the

value of f in the elements which share boundaries�−
m with themth element, the upwind

elements.
To obtain a well posed problem the initial condition at the inflow of the domain has to

be prescribed. The resulting matrix equations have the following form:

[D]{f e} = [B]{ḟ e} + [D0]{f0} (8.18)

All quantities which are defined inside the elements and which are interpolated by discon-
tinuous functions are written with the suffix()e. In effect, these are variables which are
defined in the integration points such as temperatures and strains.
The solutions obtained in this way for the convection equations are free of spurious oscil-
lations and show hardly any cross-wind diffusion.
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8.3.2 thermal equations

For the thermal problem the discretization Equation (5.5) from Chapter 5 is used:∫
V

r · q dV +
∫
�e

κ

γ
rnqn d� =

∫
V

κ∇ · rT dV −
∫

�T∪�e

κrnTe d� ∀r (8.19)

wherer is a vector weight function with rn = 0 on�q. The temperature rates are solved
directly in the integration points from (8.12). The temperatures are obtained from the
temperature rates by integration along the the streamlines using (8.13). The resulting matrix
equations are written as:

[M]{q} = [C]{Te} + {Q}
{Ṫe} = [L]{q} + {�̇T}

[D]{Te} = [B]{Ṫe} + [D0]{T0}
(8.20)

The coefficients of[C] and[L] are temperature dependent, so is the latent heat term{�̇T}.
The system is non-linear and requires an iterative procedure for its solution.

8.3.3 mechanical equilibrium

The mechanical equilibrium equation (8.5) is written in a weak form using a vector weight
functionw, which is equal to0 on�u:∫

V

w · σσσ · ∇ dV = 0 ∀w (8.21)

After partial integration and substitution of boundary conditions on the prescribed stress
boundaries�σ follows: ∫

V

sym(w∇):σσσ dV =
∫
�σ

w · t dA ∀w (8.22)

Substitution of (8.10)into this expression yields:∫
V

sym(w∇) : E : εεε dV =
∫
V

2Gsym(w∇) : (εεεpl + εεεtp) dV

+
∫
V

3kb tr(w∇)(εth + εtr) dV +
∫
�σ

w · t dA ∀w (8.23)

The plastic strain rates in the elements are calculated using (8.8). The strain rates are
integrated to strains using Equation (8.9). This results in a system of matrix equations:

[K]{u} = [W]{εpl(e)} + {F(T, ϕ)} + {F0}
{dpl(e)} = [Y]{u} + [G]{Ṫ e} + {�̇d}

[D]{εpl(e)} = [B]{dpl(e)} + [D0]{εpl
0 }

(8.24)
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The matrix[K] is the regular elastic stiffness matrix. The matrices[Y], [G] and the vector
{�̇d} depend on the stress state. As a consequence this is a highly non-linear system.

8.3.4 the strain rate d

The displacement fieldu is C0 continuous across element boundaries. This means that the
strain fieldεεε is discontinuous. The strain rated is the material derivative of the strain:

d = v · ∇εεε (8.25)

Just taking the derivative of the discontinuous strains in the elements does not give a proper
strain rate. The jumps across boundaries with neighbouring elements have to also be taken
into account. One method is to construct a continuous field by nodal averaging (Hinton and
Campbell, 1974; Yuet al., 2001). Alternatively some sort of gradient recovery (Zienkiewicz
et al., 1999) may be employed. Balagangadhar and Tortorelli (2000) on the other hand
took the local derivative, disregarding inter-element jumps. They remarked that although
theoretically not correct, this did not cause any problems.

In our case we need only the derivative in the streamline direction. To obtain this we
resort again to the discontinuous Galerkin method of Section 8.3.1. This time, however,
it is used in the opposite direction, in order to obtain material derivatives from a known
discontinuous field. Compare with Equation (8.18):

[B]{de} = [D]{εe} (8.26)

Inspection of matrix[B] shows that the contribution from one element has no coupling with
that from other elements. It is a diagonal 3x3 ’mass’ matrix. The only external coupling
comes from[D], which refers to the upwind neighbours. Calculation ofd is performed
element by element involving upwind neighbours only.

8.4 Implementation

Quadratic triangles are used withu andq as nodal variables. Per element three integration
points are used. This implies that the interpolation of the element fieldsσσσ , εεε, d, ϕ andT is
linear, with the integration point values as basis.

The convection equation (8.14) does not change between iterations. Therefore equation
(8.18) is solved right at the beginning. This allows for solution of the the integration point
temperatures{Te} in equations (8.20) in terms of the nodal point heat fluxesq:

[Kqq]{q} = {Rq} (8.27)

The matrices are evaluated as:

[Kqq] = [M] − [C][D−1][B][L]
{Rq} = {Q} + [C]{T0} + [C][D−1][B]{�̇T} (8.28)

The solution requires only a few iterations to account for temperature dependent properties
and temperature dependent phase transformations.
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Having the solution of the convection equation at hand also allows us to directly assemble
a similar system matrix for the mechanical problem:

[Kuu]{u} = {Ru} (8.29)

The matrices can be evaluated as:

[Kuu] = [K] − [W][D−1][B][Y]
{Ru} = [W][D−1][B]([G]{Ṫe} + {�̇d})+

+ [W]{εpl
0 } + {F(T, ϕ)}

(8.30)

Assembly of the element matrix of one element requires looping over all elements upwind
from the considered element. This implies that assembly of the system matrices of equation
(8.30) takes roughlyO(N2

el)operations. Already for an average size model this is prohibitive.
Furthermore, since the element reactions of one element are determined by the distortions
in all the upwind elements, matrix[Kuu] will not be sparse. This means that, when all nodal
points are sorted with respect to their distance from the inflow boundary, practically all
matrix elements below the diagonal will be non-zero. The required memory scales roughly
with N2

node.
Our experience is that a fairly good convergence can be reached when only the elastic

stiffness matrix[K] is used to find feasible solution directions. This is combined with one-
dimensional line searches. In this way only the right hand side{Ru} needs to be assembled.
Convergence is slow but steady until after approximately 50 iterations the norm of the
unbalance becomes lower than 1 % of‖{F(T, ϕ)}‖, the norm of the nodal forces due to
thermal and transformation dilatation. This is illustrated in Figure 8.6 for the simulations
in section 8.5.

8.4.1 outlet boundary conditions

Special boundary conditions are needed at the outflow boundary in order to specify the stea-
diness of the stress distribution. Balagangadhar and Tortorelli (2000) propose a procedure
in which the resultant stress in an element at the outflow boundary is mirrored in an identical
phantom element across from this boundary. The contribution to the nodal reaction from
this phantom element is then added to the nodal reactions in the boundary nodes.

Their finite element model is a structured mesh of quadrilaterals, so that the elements
adjacent to the outflow boundary are easily identified. This in not the case with our unst-
ructured mesh of triangular elements. Careful scrutiny of their procedure reveals that it
results in cancellation of the components of the residual vector parallel to the flow direction.
The values of perpendicular components will be doubled. The former is correct, the latter
however is not justified, were it not that in a fully developed steady flow these perpendicular
components ought to be zero.

Inspired by this procedure we adopt a slightly simpler working method: the residual
force components parallel to the flow direction in the outlet boundary nodes are made equal
to zero while the perpendicular components are left untouched. Note that this does not mean
that the outlet boundary is specified as stress free. Rather this procedure specifies that it is
stress increment free, i.e. the current stress is preserved.
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Figure 8.3: Steady laser hardening, the temperature distribution.
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Figure 8.4: Steady laser hardening, the martensite distribution.

Results obtained with the steady state method of this chapter were already reported in
Geijselaerset al. (2001). Here results are presented of the method applied to a simulation
of a laser hardening process of a steel slab with identical parameters as in Chapters 6 and
7. The model is the same as that shown in Figure 7.14. It consists of 401 elements and 892
nodal points.
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Figure 8.5: Steady laser hardening, temperature and martensite distributions along the top face.

temperatures and phase distribution

In Figures 8.3 and 8.4 the temperature and the martensite distributions are shown. The
evolutions of temperature and martensite fraction along the top surface are shown in Figure
8.5 compared with results from the ALE calculation. As can be seen, the agreement of
both temperature and martensite distributions is excellent. Eleven iterations were required
to obtain an accuracy of 0.1% of the heat flowq.

The streamline integration, however, required some attention. In particular the straight
calculation of phase fraction transformation rates and integration by solution of the convec-
tion equation:

{ϕe} = [D−1][B]{ϕ̇e} + {ϕe
0} (8.31)

does not yield a stable algorithm. Therefore the following routine has been developed:

1. Sum each row of matrix[D−1][B] to obtain the (exact!) time required for the material
to reach the considered integration point from the inflow boundary.
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2. Sort the integration points in the order of the time from the inflow.

3. Estimate the dwelling time of the material in the region covered by each integration
point. The diagonal elements of[D−1][B] give a good estimate of this time.

4. Calculate the increment at each integration point in sorted order, first calculating the
initial value for the integration point by summing the convective contribution for this
particular integration point from all upstream integration points.

5. The material rate is then obtained by dividing the increment by the dwelling time.

The sorting is applied to avoid having to iterate, since current local temperatures and
phase fractions determine the temperature rates as well as the phase fraction rates. The
dwelling time is used to calculate an increment. The increment is then divided by this time
to obtain a rate. In this way overshoots caused by local high rates are avoided.

stresses and distortions
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Figure 8.6: Convergence behaviour of a steady state thermo-mechanical simulation.

Calculation of the distortions was first attempted with an implementation based on
the consistent system matrix[Kuu] of Equation (8.30). This did not yield a result with
satisfactory convergence. Some pertaining inconsistencies between the system matrix and
the assembly of the unbalance vector{Ru} could not be remedied. Moreover the calculation
was very slow due to excessive time required for assembly of the matrix.

The time consumption statistics for this model are: assembly of the consistent matrix
[Kuu] : 1800 s; assembly of the unbalance force vector{Ru} : 50 s; assembly of the elastic
stiffness matrix[K]: 1.2 s. Experiments with different size models indicate that the time
for assembly of[Kuu] scales asN2.1

el ; the time for assembly of{Ru} scales asN1.5
el .

As already mentioned it is more stable and also cheaper to use the elastic stiffness
matrix [K] to find a feasible direction. The step size in this direction is determined by a
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Figure 8.8: Steady laser hardening, distribution of the equivalent plastic strain.

one dimensional line search. Typically 5 to 7 evaluations of{Ru} are required per iteration.
Convergence is slow but steady as is shown in Figure 8.6.

The distortion of the slab is apparent from Figure 8.7. Consistent with the results from
Chapters 6 the heat treatment causes a slightly convex upper surface. However, since this is
a plane strain simulation, it may be expected that the deformations are grossly exaggerated.

In Figure 8.8 the distribution of the equivalent plastic strain is shown. Plastic defor-
mation is seen to occur specifically at two instances, during heating and during martensite
transformation.

8.6 Conclusions

A one-step steady state method was developed for simulation of steady laser processing.
The method is based on the displacement based reference formulation of Balagangadhar
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and Tortorelli (2000). This method was modified such that only displacements and heat
flows appear as primary variables. The use of the discontinuous Galerkin method for both
streamline integration and streamline differentiation was added. The steady state method
was demonstrated on a thermo-mechanical calculation of steady laser hardening.





9. Conclusions and Recommendations

In this thesis the numerical simulation of solid state phase transformations has been studied.
Emphasis was placed on the simulation of laser transformation hardening.

Phase transformation simulation

Laser hardening is characterized by high thermal rates and short interaction times. A kinetic
model, which is based on a simple carbon balance, has been developed to describe super-
heating of ferrite and super-cooling of austenite. For the determination of the required
kinetic parameters a method is presented to estimate transformation time constants from
continuous cooling tests rather than from isothermal tests.

Constitutive equations

A comprehensive set of constitutive equations for thermo-mechanical calculations with
solid state phase transformations have been derived. The rate equations were integrated
consistently to obtain incremental equations suitable for simulations with integration time
steps of the order of the transformation time constants.

Implementation of the full set of equations has not yet been accomplished. Thermo-
mechanical simulations with a staggered iteration scheme run well when no stress influence
on transformation kinetics is modelled. The inclusion of stress influence causes instabilities
when not implemented in a fully consistent manner.

ALE method

For the ALE method a convection algorithm is required which is stable and accurate at rea-
sonably large convective displacements. The second order discontinuous Galerkin method
enhanced with implicit terms is an explicit method which yields accurate results for Courant
numbers up to 0.9.

This is demonstrated on simulations of steady state laser hardening. Results of ALE
calculations of the thermal field during steady laser processing have been presented. No
results have yet been obtained for the full thermo-mechanically coupled problem.

Steady state method

The displacement based reference formulation for steady state thermo-mechanical processes
has been adapted for simulation of steady state laser hardening. The steady convection or

95
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stream line integration is modelled using a discontinuous Galerkin formulation. The discon-
tinuous Galerkin method can also be used for the stream line differentiation of discontinuous
data fields.

Thermal as well as thermo-mechanical calculations have been performed. The results
of the steady state thermal calculation agree with the results obtained with the ALE method.



A. Material Data for Ck45
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The material data used in the simulations were obtained from several sources. Since the
data from different sources were sometimes conflicting or dealing with other steel grades,
the numerical values were treated as approximate values. In Figures A.2 through A.7 our
interpretation of these data is shown.

The mechanical data and thermal material data were obtained from:
Hildenwall and Ericson (1977)
Deniset al. (1987)
Krielaart (1995)
Gür and Tekkaya (1996)

The data for the transformation plasticity and the data concerning stress-transformation
interaction were obtained from:
Bhattacharyya and Kehl (1955)
de Jong and Rathenau (1961)
Greenwood and Johnson (1965)
Aeby-Gautier (1985)
Sjöström (1985)
Deniset al. (1985)
Videauet al. (1996)

σ y
(M

P
a

)

0 5 15equiv. plastic strain (%)

ferrite & pearlite

austenite

martensite

0

500

1000

2000

Figure A.1: The stress strain curves for each phase.
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Kinetics
Martensite TMs0 = 355◦C

β = 0.011
stress modification AM = 1.25 10−6 K/Pa

BM = 0.75 10−6 K/Pa

Pearlite Figure B.5
nα = 3.5
np = 1.1

stress modification Aτ = 0.02 10−6 s/Pa
Bτ = 0.06 10−6 s/Pa

Austenite Figure B.7
nγ = 2.5 (pearlite to austenite)
nγ = 1.0 (ferrite to austenite)

stress modification -
Transformation plasticity
Martensite K = 0.0075
Pearlite K = 0.0150
Austenite -
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B.1 Introduction

Transformation data are generally presented in two types of diagrams, isothermal TTT
diagrams and continuous cooling (or heating) diagrams (CCT or TTA diagrams). After
choosing an appropriate kinetic model for the description of the transformation, the para-
meters can be obtained from the TTT diagrams. When these parameters are used in the
equations from Section B.2, the accuracy can be checked by simulations of for example
continuous cooling and comparison of the results with the available continuous cooling
diagrams. A calculation for cooling of Ck45 is shown in Figure B.1 . It turns out that the
reaction rates are grossly underestimated.

For the calculations of hardening it may be argued that the data as obtained during
continuous cooling are more relevant since these represent more closely the actual process.
Therefore we need a method to extract the parameters from CCT diagrams rather than from
TTT diagrams. The objective of this section is to develop this method. The overall objective
of this work is to simulate phase transformations. This is done based on the additivity
principle, regardless of whether it applies or not. This is also reflected in this section.
The parameter extraction method is based on application of the additivity principle without
questioning its validity. The benefit of this apparent simplification is that the extraction
method is consistent with the simulation model.

First a general equation is derived. Next, this equation is applied to the ferrite-pearlite
reaction during cooling of Ck45 steel.

0.1 1 10 100 1000 10000
0

Time (s)

200

400

600

800

T ( C)
0

Figure B.1: Continuous cooling diagram diagram simulated with data from TTT diagram (dashed
lines), overlayed on the corresponding CCT diagram. Data obtained from Wever and
Rose (1961).
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B.2 Kinetic models

The transformation proceeds via nucleation and subsequent growth. While the first nuclei
start growing, more nuclei appear at other locations. The kinetics shows three phases, initial
nucleation, growth of the first nuclei with steady nucleation and finally site saturation and
impingement of the growing grains with a retardation of the growth. Different mathematical
models have been proposed to describe the transformationkinetics. The fraction transformed
ϕ is initially:

ϕ = ktn or alternatively:ϕ =
(

t

τ

)n

(B.1)

Heren is the Avrami exponent andτ is a time constant. The value ofn depends on the
ratio of nucleation rate and growth rate. Rather than an Avrami coefficientk with an
awkward dimension (time−n) it is preferable to use the time constantτ . Its value depends
on the absolute values of both nucleation and growth rates. Bothn andτ are functions
of the temperatureT . With proceeding transformation the available nucleation volume
becomes exhausted. Also retardation due to impingement of growing crystals occurs. This
is described by relating the growth to the amount of virgin material left(1−ϕ). This results
in a general rate equation:

ϕ̇ = (1 − ϕ)r n

τ

(
t

τ

)n−1

(B.2)

The saturation exponentr depends on the growth mode (lineal, planar, spherical). In general
it is also temperature dependent. Choosingr = 1 the Avrami equation is obtained (Avrami,
1939, 1940),r = 2 leads to the Austin and Rickett (1939) equation. Other choices forr are
also possible.

When Equation (B.2) is appropriately integrated the equation for phase changes by
nucleation and growth is obtained (Fig. B.2):

r = 1: ϕ(t) = 1 − e−(t/τ)n
(Avrami)

r = 2: ϕ(t) = 1 − 1
1+(t/τ)n (Austin-Rickett)

r �= 1: ϕ(t) = 1 − 1
r−1√1+(r−1)(t/τ)n

(B.3)

These equations have been derived for isothermal phase change. To describe non-isothermal
processes, we can not rely on a functionϕ(t, T ). Rather a form has to be used, which relates
the phase change rate to the instantaneous state. Assuming that the additivity principle holds
(Cahn, 1956) a rate equation may be used of the form:

ϕ̇ = ϕ̇(ϕ, T ) (B.4)

After elimination of the time from Eqs. (B.2) and (B.3) the following rate equations are
derived:

ϕ̇ = (1 − ϕ) n
τ

(− ln(1 − ϕ))
n−1

n Avrami

ϕ̇ = (1 − ϕ)
n+1

n n
τ
ϕ

n−1
n Austin-Rickett

ϕ̇ = (1 − ϕ)
r+n−1

n n
τ

(
(1−ϕ)(r−1)−1

1−r

) n−1
n

r �= 1

(B.5)
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By applying a Taylor expansion to the last factor of each of these expressions an approximate
rate equation is obtained, which is simple, applicable to all values ofr and remarkably
accurate (Starink, 1997):

ϕ̇ ≈ (1 − ϕ)
r+n−1

n
n

τ
ϕ

n−1
n (B.6)

In the case that the transformation starts from a non-zero fractionϕ0 and saturates to an
equilibrium fractionϕ̄ not equal to one, in stead ofϕ must be substituted(ϕ −ϕ0)/(ϕ̄ −ϕ0).
This yields:

ϕ̇ ≈
(

ϕ̄ − ϕ

ϕ̄ − ϕ0

) r+n−1
n n

τ

(
ϕ − ϕ0

ϕ̄ − ϕ0

) n−1
n

(B.7)

When bothn andr are constants the transformation rate only depends on the time constant
τ . The transformation is then said to be iso-kinetic. It will be shown that in that caseτ can
be analytically determined from continuous cooling tests.

B.3 Estimation of time constants

During isothermal transformation,τ1(T ) is the time needed to produce a certain proportion
ϕ1. In a TTT diagram it may be the curve indicating the start of a reaction, the end of the
reaction or any constant phase fraction curve in between. It is a constant fraction of the time
constantτ in the evolution equation (B.3).

The additivity rule (Cahn, 1956; Leblond and Devaux, 1984) states that in an non-
isothermal iso-kinetic process this same portion is obtained when a timet1 has passed, such
that: ∫ t1

0

dt

τ1(T )
= 1 (B.8)
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Figure B.2: Sigmoidal curves according to Equation (B.3)
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Transformations are studied using continuous cooling or heating tests. The results are
presented in e.g. Continuous Cooling Transformation (CCT) diagrams. If we pick one
particular event then (B.8) holds for the corresponding time constant. When the temperature
rate is constant the time and the temperature are related:

dt = dT

c
(B.9)

Herec is the temperature rate. When positive,c is the heating rate, when negative, it is
the cooling rate. Assume, for the time being, a positivec. Substitution into Equation (B.8)
yields: ∫ t1

0

dt

τ1(T )
= 1

c

∫ T1

T0

dT

τ1(T )
= 1 (B.10)

From the continuous heating or cooling diagram the temperatureT1, at which the considered
event has happened can be established as a function ofc: T1(c). For a small variation dc in
the temperature ratec, the considered event will happen at a slightly different temperature
T1 + dT1. This is reflected in the additivity principle:

1

c + dc

∫ T1+ dT1

T0

dT

τ1(T )
= 1 (B.11)

When we use Equation (B.10) we derive:

1

c + dc

∫ T1

T0

dT

τ1(T )
+ 1

c + dc

∫ T1+ dT1

T1

dT

τ1(T )
≈

c

c + dc
+ 1

c + dc

dT1

τ1(T1)
= 1

dT1

τ1(T1)
= dc

(B.12)

From this follows the expression forτ1(T ):

τ1 = dT1

dc
(B.13)

It is easily verified that this equation also applies to continuous cooling. Whenc is negative,
a positive dc just means slightly slower cooling.

B.4 Austenite-pearlite reaction

A close look at e.g. the cooling diagram in Figure B.6 and the equilibrium diagram in
Figure 2.1 reveals some complexities which have to be dealt with when (B.13) is applied
to the ferrite-pearlite reaction. The model for simulation of ferrite and pearlite formation is
described in Chapter 2. Important events, which are easily discernible in a CCT diagram,
are the start of the ferrite formation and the end of the pearlite transformation. So when
dealing with ferriteτα

1 is the time constant for the start of ferrite formation, whereasτ
p
2 is

the time constant for the completion of the pearlite transformation.
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B.4.1 ferrite formation

First of all, between the A1 and A3 temperatures the equilibrium fractions of ferrite and
austenite are not constant. The contribution betweenTA1 andTA3 to the integral in (B.8)
depends on the cooling rate in a similar way as the contributions of the other temperature
intervals so the result of (B.13) does not change as long asT1 is not between A1 and A3.

T1 between A1 and A3

0
0

1

t

ϕ
1

tt

ϕ

1 2

ϕ

Figure B.3: The relation betweent1 andt2.

Between the A1 and A3 temperatures the equilibrium fractions of ferrite and austenite are
not constant. As a consequence during an isothermal transformation test the transformation
will eventually produce the equilibrium fraction̄ϕα < ϕ̄α

0 . This also means that in order
to obtain the reference quantityϕα

1 the time required is longer thanτα
1 , sayτα

2 . The ratio
r̄ = τα

2 /τα
1 is a function of temperature (see Figure B.3). Following (B.10) the amountϕα

1
is now produced when:

−1

c

∫ TA3

T1

dT

τα
2 (T )

= −1

cr̄(T1)

∫ TA3

T1

dT

τα
1 (T )

= 1 (B.14)

Applying again a small variation dc to the temperature ratec, we find:

−1

(c + dc)(r̄(T1) + dr̄
dT1

dT1)

∫ TA3

T1+ dT1

dT

τα
1 (T )

= 1 (B.15)

After some manipulations an expression forτα
1 (T ) follows:

τα
1 = dT1

d(cr̄)
(B.16)

B.4.2 pearlite formation

The model as described in Chapter 2 ensures that pearlite formation always follows ferrite
formation. To this end the reaction rate of pearlite is linked to the instantaneous ferrite
fraction. The idea behind this is that the carbon, which is present in the undercooled
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austenite is needed for the formation of pearlite. The pearlite formation is retarded by the
presence of undercooled austenite. This is schematically shown in Figure B.4

According to (2.10) the pearlite reaction rate is lowered by a fractionϕα/ϕ̄α
0 . This can

be incorporated into the additivity principle:

−1

c

(
1

ϕ̄α
0

∫ TA1

T α
e

ϕα dT

τ
p
2 (T )

+
∫ T α

e

T2

dT

τ
p
2 (T )

)
= 1 (B.17)

HereT α
e is the temperature at which the ferrite transformation is completed. Again this

equation is perturbed to find the relation betweenc andT1:

−1

c + dc

(
1

ϕ̄α
0

∫ TA1

T α
e + dT α

e

(ϕα + dϕα)
dT

τ
p
2 (T )

+
∫ T α

e + dT α
e

T2+ dT2

dT

τ
p
2 (T )

)
= 1 (B.18)

After some algebraic manipulation we obtain:

−1

ϕ̄α
0

∫ TA1

T α
e

dϕα

τ
p
2 (T )

dT + dT2

τ
p
2 (T2)

= dc (B.19)

Which gives as an expression forτ
p
2 (T2):

τ
p
2 = dT2

dc + 1
ϕ̄α

0

∫ TA1
T α

e

dϕα

τ
p
2

dT
(B.20)

This equation lacks the elegance of the Equations (B.13) and (B.16). To solve forτp first
Equation (B.20) is evaluated without the integral accounting for the ferrite under cooling.
This estimate is then used to evaluate the integral and iteratively better estimates forτp are
obtained. After two iterations already sufficiently accurate estimates are obtained.

0
0

1.0

t

ϕ(t)

ferrite

pearliteaustenite

Figure B.4: The pearlite formation slowed down by incomplete ferrite transformation
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Figure B.5: Isothermal TTT diagram as estimated from CCT diagram (dashed lines) compared
with literature data (Wever and Rose, 1961).

0.1 1 10 100 1000 10000
0

Time (s)

200

400

600

800

T ( C)
0

Figure B.6: Comparison of simulated cooling diagram with literature data (Wever and Rose, 1961).

B.5 Continuous cooling curves (CCT)

Time constants for the austenite-pearlite transformation of Ck45 are estimated from Figure
B.6. These data are again used to simulate continuous cooling.

In Figure B.5 the TTT diagram as simulated using the estimated time constants is shown
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overlayed on the data from Wever and Rose (1961). The difference is quite big. The nose of
the reaction is projected at approximately 100 degrees higher temperature than experiments
indicate.

The simulated cooling CCT diagram is shown in Figure B.6. The predictions of ferrite-
start as well as pearlite-completion temperatures are very accurate.

The relative amounts of ferrite and pearlite after cooling depend on the cooling rate
Krielaart (1995). This effect is not predicted at all. The overall reaction times compare
very well so that in the end the final martensite contents will be predicted with sufficient
accuracy.

B.6 Continuous heating curves (TTA)
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Figure B.7: Time constants for austenization based on literature data (Orlichet al., 1973).

The procedure of this section has also been applied to the continuous heating austenization
diagrams as given in Orlichet al. (1973). The time constants are shown in Figure B.7. The
results of a simulation are shown in Figure B.8.
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(Orlich et al., 1973).
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C.1 Introduction

In this section an estimate is given of the yield stress of a compound of a ductile matrix
with rigid inclusions. The inclusions are a model of the hard martensite phase in the ductile
austenite. The compound yield stress is calculated by first estimating the strain concentration
in the soft phase. Next, the plastic dissipation is estimated under the assumption of ideal
plastic behaviour of the soft phase.

Consider a control volume with one inclusion such that the volume ratio of inclusion
and total volume equals the volume fraction of the rigid phase. The volume is a cube with
dimensions 1. The inclusion is also a cube, but with dimensionsa, wherea << 1. The
volume phase fraction of the inclusionϕ anda are then related byϕ = a3. The model is
shown in Figure C.1.

y
x

z

x

y

Figure C.1: A rigid inclusion in a ductile matrix

C.2 Deformations

Assume a far field displacement field:

u(x, y, z) = εxy y

v(x, y, z) = εxyx

w(x, y, z) = 0

(C.1)
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This gives an overall shear deformationγxy = 2εxy of the compound. Now calculate the

average shear strainsγ̄ (m)
i j in the matrix using the divergence theorem:∫

V (m)

γxy dV = (1 − ϕ)γ̄ (m)
xy =

∫
V

∂u

∂y
+ ∂v

∂x
dV =

∫
S

uny + vnx d S

∫
V (m)

γyz dV = (1 − ϕ)γ̄ (m)
yz =

∫
V

∂v

∂z
+ ∂w

∂y
dV =

∫
S

vnzd S

∫
V (m)

γzx dV = (1 − ϕ)γ̄ (m)
zx =

∫
V

∂w

∂x
+ ∂u

∂z
dV =

∫
S

unzd S

(C.2)

Herenx , ny andnz are the components of the normal on the bounding surface of the control
volume. Evaluation yields the so called self consistent strain relations:

γ̄ (m)
xy = γxy/(1 − ϕ)

γ̄ (m)
yz = 0

γ̄ (m)
zx = 0

(C.3)

The averageyz andzx shears in the matrix equal zero. As may be apparent from Figure
C.1 this is due to shear strain components on opposite sides of the inclusion which cancel
out. To calculate the dissipation these shears will be multiplied by stresses having the
same direction. Locallyτi j εi j is positive. Although opposite in sign, all shears add to the
dissipation.

The integration for the average off-axis (not aligned withγxy) components is done over
an eighth of the volume. Choose the octant whereγyz > 0.

1

8

∫
V (m)

|γyz| dV = 1

8
(1 − ϕ)|γ̄ (m)

yz | =
∫

S/8

vnz dS (C.4)

where "S/8" is the boundingsurface of the octantV/8. This integral only has to be evaluated
over the top (nz = 1) surfaceStop and the middle surfaceSmid (z = 0). For the top surface
follows:

∫
Stop/4

vnz dS =
1
2∫

0

1
2∫

0

εxyx dx dy = 1

16
εxy (C.5)

For the middle surface we assume that the displacement field in the matrix equalsv(x, y) =
εxyx except for a thin boundary layer next to the inclusion. This yields an approximate
expression for the integral over the middle surface:

∫
(Smid−a2)/4

vnz dS = −
1
2∫

a
2

1
2∫

a
2

εxyx dx dy = − 1

16
(1 − a3)εxy (C.6)
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So the result is: ∫
V (m)

|γyz| dV = 1

2
a3εxy = 1

2
ϕεxy = 1

4
ϕγxy (C.7)

This also applies to thezx shear. From this follows that an overall shear strainγxy causes
an average strain̄γxy in the matrix:

γ̄ (m)
xy = γxy

1 − ϕ
(C.8)

and secondary off-axis strainsγyz andγzx such that:

|γ̄ (m)
yz | = ϕγxy

4(1 − ϕ)

|γ̄ (m)
zx | = ϕγxy

4(1 − ϕ)

(C.9)

C.3 Overall yield stress

To determine the yield stress of the compound the work done by the external load is set
equal to the dissipation by the internal stresses. In particular for our control volume this
means:

τ̄yld dγxy = (1 − ϕ)τ
(m)
yld dγ̄

(m)
eff (C.10)

To obtain an estimate of the effective average shearγ̄
(m)
eff observe that the additionalγ

(m)
xy is

active on thenx = ±1 andny = ±1 faces of the inclusion, whereas the componentsγ
(m)
yz

andγ
(m)
zx are concentrated on thenz = ±1 faces. The action of theγxy is uncoupled from

that of the other two. To account for the effect ofγ
(m)
yz andγ

(m)
zx the effective shear strain

γ
(m)
eff is estimated.

γ
(m)
eff =

√
(γ

(m)
yz )2 + (γ

(m)
zx )2 (C.11)

Linearly varying distributions are assumed on thenz = ±1 faces of the inclusion:

γ (m)
yz (x, y) = nzϕεxyx

γ (m)
zx (x, y) = nzϕεxy y

(C.12)

Then the total amount of the effective strain at these faces is

2εxy

a
2∫

− a
2

a
2∫

− a
2

√
x2 + y2 dx dy = 0.765ϕεxy = 0.383ϕγxy (C.13)

So the average effective strain in the matrix totals

γ̄
(m)
eff = γxy

1 − ϕ
(1 + 0.383ϕ) (C.14)

Assume that d̄γ (m)
eff / dγxy = γ̄

(m)
eff /γxy . Substitution into (C.10) yields the effective yield

stress of the compound:
τ̄yld = (1 + 0.383ϕ)τ

(m)
yld (C.15)



C.4 Application to austenite-martensite mixture 117

C.4 Application to austenite-martensite mixture
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Figure C.2: Yield stress of an austenite-martensite mixture (σ
γ
y = 250 MPa,σm

y = 1500 MPa)
and comparison with FE results by Leblondet al. (1986)

For the yield stress of the mixture of austenite and martensite an expression is desired
of the form:

σy = ϕγ σ
γ
y + f (ϕm)σm

y (C.16)

Equation (C.15) is valid for small values ofϕ. Initially the compound yield stress is inde-
pendent of the yield stress of the hard phase.

f (0) = 0 and f ′(0) = 0.383
σ

γ
y

σm
y

(C.17)

When growing, the martensite will eventually become the dominant phase and the yield
stress is described by a linear mixture law.

f (1) = 1 and f ′(1) = 1 (C.18)

This is achieved by using forf (ϕm) a polynomial function:

f (ϕm) = ϕm(C + 2(1 − C)ϕm − (1 − C)(ϕm)2)

where:C = 1.383
σ

γ
y

σm
y

(C.19)

This result is illustrated in Figure C.2 for a mixture of austenite with yield stress 250 MPa
and martensite with yield stress 1500 MPa.
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